These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 23211479)
1. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Guo X; Zhang R; Li Z; Dai D; Li C; Zhou X Bioresour Technol; 2013 Jan; 128():547-52. PubMed ID: 23211479 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Ahmad I; Shim WY; Jeon WY; Yoon BH; Kim JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):199-204. PubMed ID: 21969058 [TBL] [Abstract][Full Text] [Related]
3. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Kumar V; Krishania M; Preet Sandhu P; Ahluwalia V; Gnansounou E; Sangwan RS Bioresour Technol; 2018 Mar; 251():416-419. PubMed ID: 29276111 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Misra S; Raghuwanshi S; Saxena RK Carbohydr Polym; 2013 Feb; 92(2):1596-601. PubMed ID: 23399194 [TBL] [Abstract][Full Text] [Related]
5. Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Li Z; Qu H; Li C; Zhou X Bioresour Technol; 2013 Dec; 149():413-9. PubMed ID: 24128404 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis. Jia H; Shao T; Zhong C; Li H; Jiang M; Zhou H; Wei P Carbohydr Polym; 2016 Oct; 151():676-683. PubMed ID: 27474613 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Lara CA; Santos RO; Cadete RM; Ferreira C; Marques S; Gírio F; Oliveira ES; Rosa CA; Fonseca C Antonie Van Leeuwenhoek; 2014 Jun; 105(6):1107-19. PubMed ID: 24748334 [TBL] [Abstract][Full Text] [Related]
8. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. Ling H; Cheng K; Ge J; Ping W N Biotechnol; 2011 Oct; 28(6):673-8. PubMed ID: 20466087 [TBL] [Abstract][Full Text] [Related]
9. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. La Grange DC; Pretorius IS; Claeyssens M; van Zyl WH Appl Environ Microbiol; 2001 Dec; 67(12):5512-9. PubMed ID: 11722900 [TBL] [Abstract][Full Text] [Related]
10. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Jeon WY; Yoon BH; Ko BS; Shim WY; Kim JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):191-8. PubMed ID: 21922311 [TBL] [Abstract][Full Text] [Related]
11. Xylitol production from corncob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Wang L; Wu D; Tang P; Fan X; Yuan Q Carbohydr Polym; 2012 Oct; 90(2):1106-13. PubMed ID: 22840046 [TBL] [Abstract][Full Text] [Related]
12. Detoxification of corncob acid hydrolysate with SAA pretreatment and xylitol production by immobilized Candida tropicalis. Deng LH; Tang Y; Liu Y ScientificWorldJournal; 2014; 2014():214632. PubMed ID: 25133211 [TBL] [Abstract][Full Text] [Related]
13. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome. Kim SK; Russell J; Cha M; Himmel ME; Bomble YJ; Westpheling J Appl Environ Microbiol; 2021 Jun; 87(14):e0052421. PubMed ID: 33990300 [No Abstract] [Full Text] [Related]
14. Aspergillus labruscus ITAL 22.223 xylanase - immobilization and application for the obtainment of corncob xylan targeting xylitol production. Maestrello CC; Cavalcanti RMF; Guimarães LHS Braz J Microbiol; 2024 Aug; ():. PubMed ID: 39120654 [TBL] [Abstract][Full Text] [Related]
15. Xylitol production by genetically engineered Trichoderma reesei strains using barley straw as feedstock. Dashtban M; Kepka G; Seiboth B; Qin W Appl Biochem Biotechnol; 2013 Jan; 169(2):554-69. PubMed ID: 23247825 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway. Ahmad I; Shim WY; Kim JH Bioprocess Biosyst Eng; 2013 Sep; 36(9):1279-84. PubMed ID: 23232964 [TBL] [Abstract][Full Text] [Related]
17. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Mateo S; Puentes JG; Moya AJ; Sánchez S Bioresour Technol; 2015 Aug; 190():1-6. PubMed ID: 25916261 [TBL] [Abstract][Full Text] [Related]
18. Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery. Singh AK; Deeba F; Kumar M; Kumari S; Wani SA; Paul T; Gaur NA Microb Cell Fact; 2023 Oct; 22(1):201. PubMed ID: 37803395 [TBL] [Abstract][Full Text] [Related]
19. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Rao RS; Jyothi ChP; Prakasham RS; Sarma PN; Rao LV Bioresour Technol; 2006 Oct; 97(15):1974-8. PubMed ID: 16242318 [TBL] [Abstract][Full Text] [Related]
20. Construction of a high-efficiency gene-targeting system in brewing-wine Aspergillus oryzae industrial strain used in direct xylitol conversion from xylan. Chen H; Du Y; Guo H Acta Biochim Biophys Sin (Shanghai); 2018 Jul; 50(7):723-726. PubMed ID: 29796656 [No Abstract] [Full Text] [Related] [Next] [New Search]