BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23211563)

  • 1. Can age-related CNS taste differences be detected as early as middle age? Evidence from fMRI.
    Green E; Jacobson A; Haase L; Murphy C
    Neuroscience; 2013 Mar; 232():194-203. PubMed ID: 23211563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related functional changes in gustatory and reward processing regions: An fMRI study.
    Jacobson A; Green E; Murphy C
    Neuroimage; 2010 Nov; 53(2):602-10. PubMed ID: 20472070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-Related Changes in Gustatory, Homeostatic, Reward, and Memory Processing of Sweet Taste in the Metabolic Syndrome: An fMRI Study.
    Jacobson A; Green E; Haase L; Szajer J; Murphy C
    Perception; 2017; 46(3-4):283-306. PubMed ID: 28056655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced brain response to a sweet taste in Hispanic young adults.
    Szajer J; Jacobson A; Green E; Murphy C
    Brain Res; 2017 Nov; 1674():101-110. PubMed ID: 28851601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of taste and pleasantness evaluation in the metabolic syndrome.
    Green E; Jacobson A; Haase L; Murphy C
    Brain Res; 2015 Sep; 1620():57-71. PubMed ID: 25842372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anterior insular cortex represents breaches of taste identity expectation.
    Veldhuizen MG; Douglas D; Aschenbrenner K; Gitelman DR; Small DM
    J Neurosci; 2011 Oct; 31(41):14735-44. PubMed ID: 21994389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural processing of basic tastes in healthy young and older adults - an fMRI study.
    Hoogeveen HR; Dalenberg JR; Renken RJ; ter Horst GJ; Lorist MM
    Neuroimage; 2015 Oct; 119():1-12. PubMed ID: 26072251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex differences in the taste-evoked functional connectivity network.
    Ponticorvo S; Prinster A; Cantone E; Di Salle F; Esposito F; Canna A
    Chem Senses; 2022 Jan; 47():. PubMed ID: 35749468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taste Quality Representation in the Human Brain.
    Avery JA; Liu AG; Ingeholm JE; Riddell CD; Gotts SJ; Martin A
    J Neurosci; 2020 Jan; 40(5):1042-1052. PubMed ID: 31836661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral processing of umami: A pilot study on the effects of familiarity.
    Singh PB; Hummel T; Gerber JC; Landis BN; Iannilli E
    Brain Res; 2015 Jul; 1614():67-74. PubMed ID: 25911584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taste Perception and Caffeine Consumption: An fMRI Study.
    Gramling L; Kapoulea E; Murphy C
    Nutrients; 2018 Dec; 11(1):. PubMed ID: 30586867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Neural Basis of Taste-visual Modal Conflict Control in Appetitive and Aversive Gustatory Context.
    Xiao X; Dupuis-Roy N; Jiang J; Du X; Zhang M; Zhang Q
    Neuroscience; 2018 Feb; 372():154-160. PubMed ID: 29294344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of taste perception in congenital blindness.
    Gagnon L; Kupers R; Ptito M
    Neuropsychologia; 2015 Apr; 70():227-34. PubMed ID: 25708174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas.
    Haase L; Green E; Murphy C
    Appetite; 2011 Oct; 57(2):421-34. PubMed ID: 21718731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic taste processing recruits bilateral anteroventral and middle dorsal insulae: An activation likelihood estimation meta-analysis of fMRI studies.
    Yeung AWK; Goto TK; Leung WK
    Brain Behav; 2017 Apr; 7(4):e00655. PubMed ID: 28413706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional MRI cortical activations from unilateral tactile-taste stimulations of the tongue.
    Mascioli G; Berlucchi G; Pierpaoli C; Salvolini U; Barbaresi P; Fabri M; Polonara G
    Physiol Behav; 2015 Nov; 151():221-9. PubMed ID: 26220466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional magnetic resonance imaging investigation of brain regions associated with astringency.
    Kishi M; Sadachi H; Nakamura J; Tonoike M
    Neurosci Res; 2017 Sep; 122():9-16. PubMed ID: 28366831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity to sweetness correlates to elevated reward brain responses to sweet and high-fat food odors in young healthy volunteers.
    Han P; Mohebbi M; Seo HS; Hummel T
    Neuroimage; 2020 Mar; 208():116413. PubMed ID: 31837472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensity-related distribution of sweet and bitter taste fMRI responses in the insular cortex.
    Canna A; Prinster A; Cantone E; Ponticorvo S; Russo AG; Di Salle F; Esposito F
    Hum Brain Mapp; 2019 Aug; 40(12):3631-3646. PubMed ID: 31066980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study.
    Seo HS; Iannilli E; Hummel C; Okazaki Y; Buschhüter D; Gerber J; Krammer GE; van Lengerich B; Hummel T
    Hum Brain Mapp; 2013 Jan; 34(1):62-76. PubMed ID: 22020878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.