BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23211706)

  • 1. Essential elements for glucosensing by gastric vagal afferents: immunocytochemistry and electrophysiology studies in the rat.
    Grabauskas G; Zhou SY; Lu Y; Song I; Owyang C
    Endocrinology; 2013 Jan; 154(1):296-307. PubMed ID: 23211706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of gastric motility by hyperglycemia is mediated by nodose ganglia KATP channels.
    Zhou SY; Lu Y; Song I; Owyang C
    Am J Physiol Gastrointest Liver Physiol; 2011 Mar; 300(3):G394-400. PubMed ID: 21193530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological identification of glucose-sensing neurons in rat nodose ganglia.
    Grabauskas G; Song I; Zhou S; Owyang C
    J Physiol; 2010 Feb; 588(Pt 4):617-32. PubMed ID: 20008464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin.
    Grabauskas G; Wu X; Lu Y; Heldsinger A; Song I; Zhou SY; Owyang C
    J Physiol; 2015 Sep; 593(17):3973-89. PubMed ID: 26174421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa.
    Schicho R; Florian W; Liebmann I; Holzer P; Lippe IT
    Eur J Neurosci; 2004 Apr; 19(7):1811-8. PubMed ID: 15078554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats.
    Vavaiya KV; Briski KP
    Brain Res; 2007 Oct; 1176():62-70. PubMed ID: 17889836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High fat diet induced changes in gastric vagal afferent response to adiponectin.
    Kentish SJ; Ratcliff K; Li H; Wittert GA; Page AJ
    Physiol Behav; 2015 Dec; 152(Pt B):354-62. PubMed ID: 26074203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of murine gastric vagal afferent mechanosensitivity by neuropeptide W.
    Li H; Kentish SJ; Kritas S; Young RL; Isaacs NJ; O'Donnell TA; Blackshaw LA; Wittert GA; Page AJ
    Acta Physiol (Oxf); 2013 Oct; 209(2):179-91. PubMed ID: 23927541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies.
    Li Y; Wu X; Yao H; Owyang C
    Am J Physiol Gastrointest Liver Physiol; 2005 Oct; 289(4):G745-52. PubMed ID: 15920018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion.
    Jawaid S; Herring AI; Getsy PM; Lewis SJ; Watanabe M; Kolesova H
    J Anat; 2022 Aug; 241(2):230-244. PubMed ID: 35396708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purinergic receptor expression and function in rat vagal sensory neurons innervating the stomach.
    Blanke EN; Stella SL; Ruiz-Velasco V; Holmes GM
    Neurosci Lett; 2019 Jul; 706():182-188. PubMed ID: 31085293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apelin modulates murine gastric vagal afferent mechanosensitivity.
    Li H; Kentish SJ; Wittert GA; Page AJ
    Physiol Behav; 2018 Oct; 194():466-473. PubMed ID: 29964068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents.
    Troy AE; Simmonds SS; Stocker SD; Browning KN
    J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal afferents innervating the gastrointestinal tract and CCKA-receptor immunoreactivity.
    Patterson LM; Zheng H; Berthoud HR
    Anat Rec; 2002 Jan; 266(1):10-20. PubMed ID: 11748567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-methyl-D-aspartate receptor subunit phenotypes of vagal afferent neurons in nodose ganglia of the rat.
    Czaja K; Ritter RC; Burns GA
    J Comp Neurol; 2006 Jun; 496(6):877-85. PubMed ID: 16628619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat.
    Zhou SY; Lu YX; Owyang C
    Am J Physiol Gastrointest Liver Physiol; 2008 May; 294(5):G1158-64. PubMed ID: 18356537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of glucokinase gene expression in the rat brain.
    Lynch RM; Tompkins LS; Brooks HL; Dunn-Meynell AA; Levin BE
    Diabetes; 2000 May; 49(5):693-700. PubMed ID: 10905475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of axoplasmic transport in the rat vagus nerve alters the numbers of neuropeptide and tyrosine hydroxylase messenger RNA-containing and immunoreactive visceral afferent neurons of the nodose ganglion.
    Zhuo H; Lewin AC; Phillips ET; Sinclair CM; Helke CJ
    Neuroscience; 1995 May; 66(1):175-87. PubMed ID: 7543661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
    Berthoud HR; Powley TL
    J Comp Neurol; 1992 May; 319(2):261-76. PubMed ID: 1522247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.