These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23212081)

  • 1. Sintering of calcium phosphate bioceramics.
    Champion E
    Acta Biomater; 2013 Apr; 9(4):5855-75. PubMed ID: 23212081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics.
    He Z; Ma J; Wang C
    Biomaterials; 2005 May; 26(14):1613-21. PubMed ID: 15576135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics.
    García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P
    J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure.
    Li B; Chen X; Guo B; Wang X; Fan H; Zhang X
    Acta Biomater; 2009 Jan; 5(1):134-43. PubMed ID: 18799376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering.
    Raynaud S; Champion E; Bernache-Assollant D
    Biomaterials; 2002 Feb; 23(4):1073-80. PubMed ID: 11791910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sintering behaviour of hydroxyapatite bioceramics.
    Ramesh S; Tan CY; Aw KL; Yeo WH; Hamdi M; Sopyan I; Teng WD
    Med J Malaysia; 2008 Jul; 63 Suppl A():89-90. PubMed ID: 19024998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sintering and the mechanical properties of the tricalcium phosphate-titania composites.
    Ayadi I; Ben Ayed F
    J Mech Behav Biomed Mater; 2015 Sep; 49():129-40. PubMed ID: 26005844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speedy bioceramics: Rapid densification of tricalcium phosphate by ultrafast high-temperature sintering.
    Biesuz M; Galotta A; Motta A; Kermani M; Grasso S; Vontorová J; Tyrpekl V; Vilémová M; Sglavo VM
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112246. PubMed ID: 34225885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous calcium phosphate glass-ceramic prepared by two-step pressing technique and using sucrose as a pore former.
    Wang C; Kasuga T; Nogami M
    J Mater Sci Mater Med; 2005 Aug; 16(8):739-44. PubMed ID: 15965744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes.
    Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)(6-x)(SiO4)x(OH)(2-x) ceramics.
    Palard M; Combes J; Champion E; Foucaud S; Rattner A; Bernache-Assollant D
    Acta Biomater; 2009 May; 5(4):1223-32. PubMed ID: 19036652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications.
    Bellucci D; Sola A; Cannillo V
    J Biomed Mater Res A; 2016 Apr; 104(4):1030-56. PubMed ID: 26646669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics.
    Frasnelli M; Sglavo VM
    Acta Biomater; 2016 Mar; 33():283-9. PubMed ID: 26796207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.
    Sprio S; Guicciardi S; Dapporto M; Melandri C; Tampieri A
    J Mech Behav Biomed Mater; 2013 Jan; 17():1-10. PubMed ID: 23122887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sintering of partially-stabilized zirconia and partially-stabilized zirconia-hydroxyapatite composites by hot isostatic pressing and pressureless sintering.
    Li J; Liao H; Hermansson L
    Biomaterials; 1996 Sep; 17(18):1787-90. PubMed ID: 8879517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics.
    Kanchana P; Sekar C
    J Appl Biomater Biomech; 2010; 8(3):153-8. PubMed ID: 21337306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural prototyping of ceramics by kinetic engineering: applications of spark plasma sintering.
    Shen Z; Nygren M
    Chem Rec; 2005; 5(3):173-84. PubMed ID: 15889404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and physical properties of tricalcium phosphate laminates for bone-tissue engineering.
    Tanimoto Y; Nishiyama N
    J Biomed Mater Res A; 2008 May; 85(2):427-33. PubMed ID: 17701974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.