BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23212246)

  • 1. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.
    Chia J; Goh G; Racine V; Ng S; Kumar P; Bard F
    Mol Syst Biol; 2012; 8():629. PubMed ID: 23212246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAi screens for genes involved in Golgi glycosylation.
    Goh GY; Bard FA
    Methods Mol Biol; 2015; 1270():411-26. PubMed ID: 25702132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digging deep into Golgi phenotypic diversity with unsupervised machine learning.
    Hussain S; Le Guezennec X; Yi W; Dong H; Chia J; Yiping K; Khoon LK; Bard F
    Mol Biol Cell; 2017 Dec; 28(25):3686-3698. PubMed ID: 29021342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening.
    Farhan H; Wendeler MW; Mitrovic S; Fava E; Silberberg Y; Sharan R; Zerial M; Hauri HP
    J Cell Biol; 2010 Jun; 189(6):997-1011. PubMed ID: 20548102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Golgi function via phosphoinositide lipids.
    Mayinger P
    Semin Cell Dev Biol; 2009 Sep; 20(7):793-800. PubMed ID: 19508852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway.
    Simpson JC; Joggerst B; Laketa V; Verissimo F; Cetin C; Erfle H; Bexiga MG; Singan VR; Hériché JK; Neumann B; Mateos A; Blake J; Bechtel S; Benes V; Wiemann S; Ellenberg J; Pepperkok R
    Nat Cell Biol; 2012 Jun; 14(7):764-74. PubMed ID: 22660414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-content screening and analysis of the Golgi complex.
    Galea G; Simpson JC
    Methods Cell Biol; 2013; 118():281-95. PubMed ID: 24295313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TbVps34, the trypanosome orthologue of Vps34, is required for Golgi complex segregation.
    Hall BS; Gabernet-Castello C; Voak A; Goulding D; Natesan SK; Field MC
    J Biol Chem; 2006 Sep; 281(37):27600-12. PubMed ID: 16835237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O-glycosylation of leukosialin in K562 cells. Evidence for initiation and elongation in early Golgi compartments.
    Piller V; Piller F; Klier FG; Fukuda M
    Eur J Biochem; 1989 Jul; 183(1):123-35. PubMed ID: 2526734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation of genome to glycome: role of the Golgi apparatus.
    Pothukuchi P; Agliarulo I; Russo D; Rizzo R; Russo F; Parashuraman S
    FEBS Lett; 2019 Sep; 593(17):2390-2411. PubMed ID: 31330561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity.
    Cheong FY; Sharma V; Blagoveshchenskaya A; Oorschot VM; Brankatschk B; Klumperman J; Freeze HH; Mayinger P
    Traffic; 2010 Sep; 11(9):1180-90. PubMed ID: 20573065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxysterol-binding protein recruitment and activity at the endoplasmic reticulum-Golgi interface are independent of Sac1.
    Charman M; Goto A; Ridgway ND
    Traffic; 2017 Aug; 18(8):519-529. PubMed ID: 28471037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function.
    Litvak V; Dahan N; Ramachandran S; Sabanay H; Lev S
    Nat Cell Biol; 2005 Mar; 7(3):225-34. PubMed ID: 15723057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods to study signaling at the Golgi apparatus.
    Reitere V; Baschieri F; Millarte V; Farhan H
    Methods Cell Biol; 2013; 118():345-58. PubMed ID: 24295317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GRASP55 regulates Golgi ribbon formation.
    Feinstein TN; Linstedt AD
    Mol Biol Cell; 2008 Jul; 19(7):2696-707. PubMed ID: 18434598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling N-Glycosylation: A Systems Biology Approach for Evaluating Changes in the Steady-State Organization of Golgi-Resident Proteins.
    Morgan R; West B; Wood AJ; Ungar D
    Methods Mol Biol; 2023; 2557():663-690. PubMed ID: 36512244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and metabolic control of lipid signalling at the Golgi.
    Piao H; Mayinger P
    Biochem Soc Trans; 2012 Feb; 40(1):205-9. PubMed ID: 22260691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex.
    Miserey-Lenkei S; Chalancon G; Bardin S; Formstecher E; Goud B; Echard A
    Nat Cell Biol; 2010 Jul; 12(7):645-54. PubMed ID: 20562865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YIPF1, YIPF2, and YIPF6 are medial-/trans-Golgi and trans-Golgi network-localized Yip domain family proteins, which play a role in the Golgi reassembly and glycan synthesis.
    Soonthornsit J; Sakai N; Sasaki Y; Watanabe R; Osako S; Nakamura N
    Exp Cell Res; 2017 Apr; 353(2):100-108. PubMed ID: 28286305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GO-PROMTO illuminates protein membrane topologies of glycan biosynthetic enzymes in the Golgi apparatus of living tissues.
    Søgaard C; Stenbæk A; Bernard S; Hadi M; Driouich A; Scheller HV; Sakuragi Y
    PLoS One; 2012; 7(2):e31324. PubMed ID: 22363620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.