These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23212310)

  • 1. The difference between stiffness and quasi-stiffness in the context of biomechanical modeling.
    Rouse EJ; Gregg RD; Hargrove LJ; Sensinger JW
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):562-8. PubMed ID: 23212310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of human ankle impedance during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):870-8. PubMed ID: 24760937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Peshkin MA; Kuiken TA
    J Biomech Eng; 2013 Aug; 135(8):81009. PubMed ID: 23719922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Impedance of the Ankle During the Terminal Stance Phase of Walking.
    Shorter AL; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):135-143. PubMed ID: 28976318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability and minimal detectable change of stiffness and other mechanical properties of the ankle joint in standing and walking.
    Cubillos LH; Rouse EJ; Augenstein TE; Joshi V; Claflin ES; Krishnan C
    Gait Posture; 2024 Feb; 108():56-62. PubMed ID: 37988887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of ankle stiffness on mechanics and energetics of walking with added loads: a prosthetic emulator study.
    Hedrick EA; Malcolm P; Wilken JM; Takahashi KZ
    J Neuroeng Rehabil; 2019 Nov; 16(1):148. PubMed ID: 31752942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A walking controller for a powered ankle prosthesis.
    Shultz AH; Mitchell JE; Truex D; Lawson BE; Ledoux E; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6203-6. PubMed ID: 25571414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.
    Günther M; Wagner H
    Comput Methods Biomech Biomed Engin; 2016; 19(8):819-34. PubMed ID: 26214594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromotor Regulation of Ankle Stiffness is Comparable to Regulation of Joint Position and Torque at Moderate Levels.
    Wind AM; Rouse EJ
    Sci Rep; 2020 Jun; 10(1):10383. PubMed ID: 32587407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking.
    Shamaei K; Sawicki GS; Dollar AM
    PLoS One; 2013; 8(3):e59935. PubMed ID: 23555839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Semi-Powered Ankle Prosthesis and Unified Controller for Level and Sloped Walking.
    Bartlett HL; King ST; Goldfarb M; Lawson BE
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():320-329. PubMed ID: 33400653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.
    Mooney LM; Lai CH; Rouse EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1611-7. PubMed ID: 25570281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle Mechanical Impedance During the Stance Phase of Running.
    Shorter AL; Rouse EJ
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1595-1603. PubMed ID: 31514123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man.
    Sinkjaer T
    Acta Neurol Scand Suppl; 1997; 170():1-28. PubMed ID: 9406617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.
    Shepherd MK; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2375-2386. PubMed ID: 28885156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2504-7. PubMed ID: 25570499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear parameter varying identification of ankle joint intrinsic stiffness during imposed walking movements.
    Sobhani Tehrani E; Jalaleddini K; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4923-7. PubMed ID: 24110839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.