These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23212310)

  • 21. Linear parameter varying identification of ankle joint intrinsic stiffness during imposed walking movements.
    Sobhani Tehrani E; Jalaleddini K; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4923-7. PubMed ID: 24110839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parameter estimation for a prosthetic ankle.
    Singer E; Ishai G; Kimmel E
    Ann Biomed Eng; 1995; 23(5):691-6. PubMed ID: 7503469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking.
    Shamaei K; Cenciarini M; Adams AA; Gregorczyk KN; Schiffman JM; Dollar AM
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2389-401. PubMed ID: 25955513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?
    Loram ID; Kelly SM; Lakie M
    J Physiol; 2001 May; 532(Pt 3):879-91. PubMed ID: 11313453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lower limb joint stiffness and muscle co-contraction adaptations to instability footwear during locomotion.
    Apps C; Sterzing T; O'Brien T; Lake M
    J Electromyogr Kinesiol; 2016 Dec; 31():55-62. PubMed ID: 27684529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements.
    Loram ID; Lakie M
    J Physiol; 2002 May; 540(Pt 3):1111-24. PubMed ID: 11986396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of plyometric training on the mechanical impedance of the human ankle joint.
    Cornu C; Almeida Silveira MI; Goubel F
    Eur J Appl Physiol Occup Physiol; 1997; 76(3):282-8. PubMed ID: 9286610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical response to ankle-foot orthosis stiffness during running.
    Russell Esposito E; Choi HS; Owens JG; Blanck RV; Wilken JM
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1125-32. PubMed ID: 26371854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic Flexion Stiffness of Foot Joints During Walking.
    Sanchis-Sales E; Sancho-Bru JL; Roda-Sales A; Pascual-Huerta J
    J Am Podiatr Med Assoc; 2016; 106(1):37-46. PubMed ID: 26895359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design.
    Glaister BC; Schoen JA; Orendurff MS; Klute GK
    J Biomech Eng; 2009 Mar; 131(3):034501. PubMed ID: 19154072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint torques and dynamic joint stiffness in elderly and young men during stepping down.
    Lark SD; Buckley JG; Bennett S; Jones D; Sargeant AJ
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):848-55. PubMed ID: 14527812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.
    Abtahi SMA; Jamshidi N; Ghaziasgar A
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):201-207. PubMed ID: 29465260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetics and passive dynamics of the ankle in downhill walking.
    Holm JK; Contakos J; Lee SW; Jang J
    J Appl Biomech; 2010 Nov; 26(4):379-89. PubMed ID: 21245497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stiffness Perception During Active Ankle and Knee Movement.
    Azocar AF; Rouse EJ
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2949-2956. PubMed ID: 28410094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joint stiffness of the ankle and the knee in running.
    Günther M; Blickhan R
    J Biomech; 2002 Nov; 35(11):1459-74. PubMed ID: 12413965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.