These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23212556)

  • 1. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.
    Zhu LM; Lei AW; Cao YL; Ai XP; Yang HX
    Chem Commun (Camb); 2013 Jan; 49(6):567-9. PubMed ID: 23212556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries.
    Shin JY; Yamada T; Yoshikawa H; Awaga K; Shinokubo H
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3096-101. PubMed ID: 24554515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high energy-density tin anode for rechargeable magnesium-ion batteries.
    Singh N; Arthur TS; Ling C; Matsui M; Mizuno F
    Chem Commun (Camb); 2013 Jan; 49(2):149-51. PubMed ID: 23168386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte.
    Liu Z; Tay SW; Li X
    Chem Commun (Camb); 2011 Dec; 47(46):12473-5. PubMed ID: 22022706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Reinforced Inductive Effect of Symmetric Bipolar Organic Molecule for High-Performance Rechargeable Batteries.
    Son G; Ri V; Shin D; Jung Y; Park CB; Kim C
    Adv Sci (Weinh); 2023 Nov; 10(31):e2301993. PubMed ID: 37750249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halogen: a high-capacity cathode for rechargeable alkaline batteries.
    Pan JQ; Sun YZ; Wan PY; Wang ZH; Liu XG
    Chem Commun (Camb); 2005 Jul; (26):3340-2. PubMed ID: 15983667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.
    Choi W; Harada D; Oyaizu K; Nishide H
    J Am Chem Soc; 2011 Dec; 133(49):19839-43. PubMed ID: 22011047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte.
    Su S; Huang Z; NuLi Y; Tuerxun F; Yang J; Wang J
    Chem Commun (Camb); 2015 Feb; 51(13):2641-4. PubMed ID: 25571942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode.
    Oh SM; Myung ST; Jang MW; Scrosati B; Hassoun J; Sun YK
    Phys Chem Chem Phys; 2013 Mar; 15(11):3827-33. PubMed ID: 23396415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material.
    Seki S; Kobayashi Y; Miyashiro H; Ohno Y; Usami A; Mita Y; Watanabe M; Terada N
    Chem Commun (Camb); 2006 Feb; (5):544-5. PubMed ID: 16432577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device.
    Sano N; Tomita W; Hara S; Min CM; Lee JS; Oyaizu K; Nishide H
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1355-61. PubMed ID: 23347552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rechargeable molecular cluster batteries.
    Yoshikawa H; Kazama C; Awaga K; Satoh M; Wada J
    Chem Commun (Camb); 2007 Aug; (30):3169-70. PubMed ID: 17653377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.
    Ma T; Pan Z; Miao L; Chen C; Han M; Shang Z; Chen J
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3158-3162. PubMed ID: 29363241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic rechargeable batteries with tailored voltage and cycle performance.
    Nishida S; Yamamoto Y; Takui T; Morita Y
    ChemSusChem; 2013 May; 6(5):794-7. PubMed ID: 23505144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery.
    Janoschka T; Friebe C; Hager MD; Martin N; Schubert US
    ChemistryOpen; 2017 Apr; 6(2):216-220. PubMed ID: 28413754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prototype systems for rechargeable magnesium batteries.
    Aurbach D; Lu Z; Schechter A; Gofer Y; Gizbar H; Turgeman R; Cohen Y; Moshkovich M; Levi E
    Nature; 2000 Oct; 407(6805):724-7. PubMed ID: 11048714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.