These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 23212556)
21. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Song Z; Zhan H; Zhou Y Chem Commun (Camb); 2009 Jan; (4):448-50. PubMed ID: 19137181 [TBL] [Abstract][Full Text] [Related]
22. An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2. Wang X; Qu Q; Hou Y; Wang F; Wu Y Chem Commun (Camb); 2013 Jul; 49(55):6179-81. PubMed ID: 23732678 [TBL] [Abstract][Full Text] [Related]
23. The rechargeable aluminum-ion battery. Jayaprakash N; Das SK; Archer LA Chem Commun (Camb); 2011 Dec; 47(47):12610-2. PubMed ID: 22051794 [TBL] [Abstract][Full Text] [Related]
24. Redox-Active Macrocycles for Organic Rechargeable Batteries. Kim DJ; Hermann KR; Prokofjevs A; Otley MT; Pezzato C; Owczarek M; Stoddart JF J Am Chem Soc; 2017 May; 139(19):6635-6643. PubMed ID: 28437104 [TBL] [Abstract][Full Text] [Related]
25. Nanoscale alloying effect of gold-platinum nanoparticles as cathode catalysts on the performance of a rechargeable lithium-oxygen battery. Yin J; Fang B; Luo J; Wanjala B; Mott D; Loukrakpam R; Ng MS; Li Z; Hong J; Whittingham MS; Zhong CJ Nanotechnology; 2012 Aug; 23(30):305404. PubMed ID: 22781275 [TBL] [Abstract][Full Text] [Related]
26. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Grigoriants I; Sominski L; Li H; Ifargan I; Aurbach D; Gedanken A Chem Commun (Camb); 2005 Feb; (7):921-3. PubMed ID: 15700082 [TBL] [Abstract][Full Text] [Related]
27. In-situ XAFS studies of Mn12 molecular-cluster batteries: super-reduced Mn12 clusters in solid-state electrochemistry. Wang H; Hamanaka S; Yokoyama T; Yoshikawa H; Awaga K Chem Asian J; 2011 Apr; 6(4):1074-9. PubMed ID: 21265025 [TBL] [Abstract][Full Text] [Related]
28. Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Zhu L; Shen Y; Sun M; Qian J; Cao Y; Ai X; Yang H Chem Commun (Camb); 2013 Dec; 49(97):11370-2. PubMed ID: 24162858 [TBL] [Abstract][Full Text] [Related]
29. A novel high energy density rechargeable lithium/air battery. Zhang T; Imanishi N; Shimonishi Y; Hirano A; Takeda Y; Yamamoto O; Sammes N Chem Commun (Camb); 2010 Mar; 46(10):1661-3. PubMed ID: 20177608 [TBL] [Abstract][Full Text] [Related]
30. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Aurbach D; Weissman I; Gofer Y; Levi E Chem Rec; 2003; 3(1):61-73. PubMed ID: 12552532 [TBL] [Abstract][Full Text] [Related]
32. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634 [TBL] [Abstract][Full Text] [Related]
33. Aqueous cathode for next-generation alkali-ion batteries. Lu Y; Goodenough JB; Kim Y J Am Chem Soc; 2011 Apr; 133(15):5756-9. PubMed ID: 21443190 [TBL] [Abstract][Full Text] [Related]
34. Solar-driven capacity enhancement of aqueous redox batteries with a vertically oriented tin disulfide array as both the photo-cathode and battery-anode. Tian Z; Li C; Cai J; Zhang L; Lu C; Song Y; Jiang T; Sun J; Dou S Chem Commun (Camb); 2019 Jan; 55(9):1291-1294. PubMed ID: 30633252 [TBL] [Abstract][Full Text] [Related]
35. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance. Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940 [TBL] [Abstract][Full Text] [Related]
36. Prelithiated silicon nanowires as an anode for lithium ion batteries. Liu N; Hu L; McDowell MT; Jackson A; Cui Y ACS Nano; 2011 Aug; 5(8):6487-93. PubMed ID: 21711012 [TBL] [Abstract][Full Text] [Related]
37. Rechargeable batteries driven by redox reactions of Mn12 clusters with structural changes: XAFS analyses of the charging/discharging processes in molecular cluster batteries. Yoshikawa H; Hamanaka S; Miyoshi Y; Kondo Y; Shigematsu S; Akutagawa N; Sato M; Yokoyama T; Awaga K Inorg Chem; 2009 Oct; 48(19):9057-9. PubMed ID: 19746899 [TBL] [Abstract][Full Text] [Related]
38. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
39. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. Zhang Z; Yoshikawa H; Awaga K J Am Chem Soc; 2014 Nov; 136(46):16112-5. PubMed ID: 25365211 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of Cyclooctatetraene-Based Aliphatic Polymers as Battery Materials: Synthesis, Electrochemical, and Thermal Characterization Supported by DFT Calculations. Speer ME; Sterzenbach C; Esser B Chempluschem; 2017 Oct; 82(10):1274-1281. PubMed ID: 31957995 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]