BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23212655)

  • 1. Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab.
    Wen H; Hao J; Li SK
    J Pharm Sci; 2013 Mar; 102(3):892-903. PubMed ID: 23212655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.
    Srikantha N; Mourad F; Suhling K; Elsaid N; Levitt J; Chung PH; Somavarapu S; Jackson TL
    Exp Eye Res; 2012 Sep; 102():85-92. PubMed ID: 22846670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of intraocular pressure on the transscleral diffusion of high-molecular-weight compounds.
    Cruysberg LP; Nuijts RM; Geroski DH; Gilbert JA; Hendrikse F; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3790-4. PubMed ID: 16186364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of high molecular weight compounds through sclera.
    Ambati J; Canakis CS; Miller JW; Gragoudas ES; Edwards A; Weissgold DJ; Kim I; Delori FC; Adamis AP
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1181-5. PubMed ID: 10752958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iontophoretic transport of charged macromolecules across human sclera.
    Chopra P; Hao J; Li SK
    Int J Pharm; 2010 Mar; 388(1-2):107-13. PubMed ID: 20045044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity.
    Pitkänen L; Ranta VP; Moilanen H; Urtti A
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):641-6. PubMed ID: 15671294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of macromolecules through sclera.
    Miao H; Wu BD; Tao Y; Li XX
    Acta Ophthalmol; 2013 Feb; 91(1):e1-6. PubMed ID: 22998133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photokinetic Drug Delivery: Near infrared (NIR) Induced Permeation Enhancement of Bevacizumab, Ranibizumab and Aflibercept through Human Sclera.
    Giannos SA; Kraft ER; Zhao ZY; Merkley KH; Cai J
    Pharm Res; 2018 Mar; 35(6):110. PubMed ID: 29600470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transscleral Iontophoresis for Noninvasive Ocular Drug Delivery of Macromolecules.
    Molokhia S; Papangkorn K; Butler C; Higuchi JW; Brar B; Ambati B; Li SK; Higuchi WI
    J Ocul Pharmacol Ther; 2020 May; 36(4):247-256. PubMed ID: 32155098
    [No Abstract]   [Full Text] [Related]  

  • 10. In-vitro permeation of bevacizumab through human sclera: effect of iontophoresis application.
    Pescina S; Ferrari G; Govoni P; Macaluso C; Padula C; Santi P; Nicoli S
    J Pharm Pharmacol; 2010 Sep; 62(9):1189-94. PubMed ID: 20796199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of permeant lipophilicity on permeation across human sclera.
    Wen H; Hao J; Li SK
    Pharm Res; 2010 Nov; 27(11):2446-56. PubMed ID: 20734114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VEGF antagonists decrease barrier function of retinal pigment epithelium in vitro: possible participation of intracellular glutathione.
    Miura Y; Klettner A; Roider J
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4848-55. PubMed ID: 20435596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules.
    Chau Y; Suen WL; Tse HY; Wong HS
    Eur J Pharm Sci; 2017 Mar; 100():273-279. PubMed ID: 28104474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo ocular fluorophotometry: delivery of fluoresceinated dextrans via transscleral diffusion in rabbits.
    Berezovsky DE; Patel SR; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7038-45. PubMed ID: 21791594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transscleral passive and iontophoretic transport: theory and analysis.
    Li SK; Hao J
    Expert Opin Drug Deliv; 2018 Mar; 15(3):283-299. PubMed ID: 29149574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch's layer.
    Cheruvu NP; Kompella UB
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4513-22. PubMed ID: 17003447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity of permeabilities for Ficoll, pullulan, charge-modified albumin and native albumin across the rat peritoneal membrane.
    Asgeirsson D; Axelsson J; Rippe C; Rippe B
    Acta Physiol (Oxf); 2009 Aug; 196(4):427-33. PubMed ID: 19141139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porcine sclera as a model of human sclera for in vitro transport experiments: histology, SEM, and comparative permeability.
    Nicoli S; Ferrari G; Quarta M; Macaluso C; Govoni P; Dallatana D; Santi P
    Mol Vis; 2009; 15():259-66. PubMed ID: 19190734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining vitreous viscosity using fluorescence recovery after photobleaching.
    Srikantha N; Teijeiro-Gonzalez Y; Simpson A; Elsaid N; Somavarapu S; Suhling K; Jackson TL
    PLoS One; 2022; 17(2):e0261925. PubMed ID: 35143514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transscleral sustained ranibizumab delivery using an episcleral implantable device: Suppression of laser-induced choroidal neovascularization in rats.
    Nagai N; Nezhad ZK; Daigaku R; Saijo S; Song Y; Terata K; Hoshi A; Nishizawa M; Nakazawa T; Kaji H; Abe T
    Int J Pharm; 2019 Aug; 567():118458. PubMed ID: 31247277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.