These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23212795)

  • 1. Numerical treatment of boundary conditions to replace lateral branches in hemodynamics.
    Porpora A; Zunino P; Vergara C; Piccinelli M
    Int J Numer Method Biomed Eng; 2012 Dec; 28(12):1165-83. PubMed ID: 23212795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulations of flow through the aorta using both ideal and realistic geometrical models.
    Wan Ab Naim WN; Ganesan P; Al Abed A; Lim E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():653-6. PubMed ID: 23365977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta.
    Bozzi S; Morbiducci U; Gallo D; Ponzini R; Rizzo G; Bignardi C; Passoni G
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1104-1112. PubMed ID: 28553722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow.
    Gallo D; De Santis G; Negri F; Tresoldi D; Ponzini R; Massai D; Deriu MA; Segers P; Verhegghe B; Rizzo G; Morbiducci U
    Ann Biomed Eng; 2012 Mar; 40(3):729-41. PubMed ID: 22009313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined MR imaging and CFD simulation of flow in the human descending aorta.
    Wood NB; Weston SJ; Kilner PJ; Gosman AD; Firmin DN
    J Magn Reson Imaging; 2001 May; 13(5):699-713. PubMed ID: 11329191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Finite element analysis of pulsatile flow in aortic arch].
    Qiao A; Wu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):583-8. PubMed ID: 11791314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HeMoLab--Hemodynamics Modelling Laboratory: an application for modelling the human cardiovascular system.
    Larrabide I; Blanco PJ; Urquiza SA; Dari EA; Vénere MJ; de Souza e Silva NA; Feijóo RA
    Comput Biol Med; 2012 Oct; 42(10):993-1004. PubMed ID: 22964397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary conditions by Schwarz-Christoffel mapping in anatomically accurate hemodynamics.
    Boutsianis E; Gupta S; Boomsma K; Poulikakos D
    Ann Biomed Eng; 2008 Dec; 36(12):2068-84. PubMed ID: 18836834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta.
    Morbiducci U; Ponzini R; Gallo D; Bignardi C; Rizzo G
    J Biomech; 2013 Jan; 46(1):102-9. PubMed ID: 23159094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of the flow field within the aortic arch during cardiac assist.
    Filipovic N; Schima H
    Artif Organs; 2011 Apr; 35(4):E73-83. PubMed ID: 21554567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts.
    Roos MW; Wadbro E; Berggren M
    Comput Biol Med; 2013 Feb; 43(2):164-8. PubMed ID: 23260571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and numerical simulation of the human aortic arch under in vivo conditions.
    García-Herrera CM; Celentano DJ
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1143-54. PubMed ID: 23371524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-solid interaction in arteries incorporating the autoregulation concept in boundary conditions.
    Afkari D; Gabaldón F
    Comput Methods Biomech Biomed Engin; 2016; 19(9):985-1001. PubMed ID: 26404580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow.
    Morbiducci U; Gallo D; Massai D; Consolo F; Ponzini R; Antiga L; Bignardi C; Deriu MA; Redaelli A
    J Biomech Eng; 2010 Sep; 132(9):091005. PubMed ID: 20815639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of blood flow in an anatomically-accurate cerebral venous tree.
    Ho H; Mithraratne K; Hunter P
    IEEE Trans Med Imaging; 2013 Jan; 32(1):85-91. PubMed ID: 22949055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties.
    Long CC; Hsu MC; Bazilevs Y; Feinstein JA; Marsden AL
    Int J Numer Method Biomed Eng; 2012 May; 28(5):513-27. PubMed ID: 25099455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a numerical pump testing framework.
    Kaufmann TA; Gregory SD; Büsen MR; Tansley GD; Steinseifer U
    Artif Organs; 2014 Sep; 38(9):783-90. PubMed ID: 25234761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data.
    Trachet B; Bols J; De Santis G; Vandenberghe S; Loeys B; Segers P
    J Biomech Eng; 2011 Dec; 133(12):121006. PubMed ID: 22206423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of pulsatile flowfield in healthy thoracic aorta models.
    Wen CY; Yang AS; Tseng LY; Chai JW
    Ann Biomed Eng; 2010 Feb; 38(2):391-402. PubMed ID: 19890715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.