These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23212798)

  • 1. An improved baseline model for a human arterial network to study the impact of aneurysms on pressure-flow waveforms.
    Low K; van Loon R; Sazonov I; Bevan RL; Nithiarasu P
    Int J Numer Method Biomed Eng; 2012 Dec; 28(12):1224-46. PubMed ID: 23212798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.
    Boileau E; Nithiarasu P; Blanco PJ; Müller LO; Fossan FE; Hellevik LR; Donders WP; Huberts W; Willemet M; Alastruey J
    Int J Numer Method Biomed Eng; 2015 Oct; 31(10):. PubMed ID: 26100764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis in three-dimensional flow through a lateral saccular aneurysm.
    Matsuzawa T
    Front Med Biol Eng; 1993; 5(2):89-94. PubMed ID: 8241034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
    Ene F; Delassus P; Morris L
    Proc Inst Mech Eng H; 2014 Aug; 228(8):768-80. PubMed ID: 25085698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.
    Callanan A; Morris LG; McGloughlin TM
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1111-9. PubMed ID: 21660780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation-based uncertainty quantification of human arterial network hemodynamics.
    Chen P; Quarteroni A; Rozza G
    Int J Numer Method Biomed Eng; 2013 Jun; 29(6):698-721. PubMed ID: 23653286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arterial pressure and flow wave analysis using time-domain 1-D hemodynamics.
    Willemet M; Alastruey J
    Ann Biomed Eng; 2015 Jan; 43(1):190-206. PubMed ID: 25138163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for non-invasively detecting the severity and location of aortic aneurysms.
    Sazonov I; Khir AW; Hacham WS; Boileau E; Carson JM; van Loon R; Ferguson C; Nithiarasu P
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1225-1242. PubMed ID: 28220320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive determination of zero-pressure geometry of arterial aneurysms.
    Raghavan ML; Ma B; Fillinger MF
    Ann Biomed Eng; 2006 Sep; 34(9):1414-9. PubMed ID: 16838128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.
    Boutsianis E; Guala M; Olgac U; Wildermuth S; Hoyer K; Ventikos Y; Poulikakos D
    J Biomech Eng; 2009 Jan; 131(1):011008. PubMed ID: 19045924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoscopically observed deformations of a compliant abdominal aortic aneurysm model.
    Meyer CA; Bertrand E; Boiron O; Deplano V
    J Biomech Eng; 2011 Nov; 133(11):111004. PubMed ID: 22168736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model of pressure and flow waveforms in the aortic root.
    Žikić D
    Eur Biophys J; 2017 Jan; 46(1):41-48. PubMed ID: 27160184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions.
    Kung EO; Les AS; Medina F; Wicker RB; McConnell MV; Taylor CA
    J Biomech Eng; 2011 Apr; 133(4):041003. PubMed ID: 21428677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a patient-specific one-dimensional model of the systemic arterial tree.
    Reymond P; Bohraus Y; Perren F; Lazeyras F; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1173-82. PubMed ID: 21622820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-dimensional lumped approach to incorporate the dynamic part of the pressure at vessel junctions in a 1D wave propagation model.
    van den Boom T; Stevens R; Delhaas T; van de Vosse F; Huberts W
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3116. PubMed ID: 29927092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.