These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23213229)

  • 41. Tank treading of optically trapped red blood cells in shear flow.
    Basu H; Dharmadhikari AK; Dharmadhikari JA; Sharma S; Mathur D
    Biophys J; 2011 Oct; 101(7):1604-12. PubMed ID: 21961586
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vesicles under simple shear flow: elucidating the role of relevant control parameters.
    Kaoui B; Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061905. PubMed ID: 20365188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations.
    Atwell S; Badens C; Charrier A; Helfer E; Viallat A
    Front Physiol; 2021; 12():775584. PubMed ID: 35069240
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical simulation of the flow-induced deformation of red blood cells.
    Pozrikidis C
    Ann Biomed Eng; 2003 Nov; 31(10):1194-205. PubMed ID: 14649493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R; Sutera SP; Rao PR
    Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active elastic network: cytoskeleton of the red blood cell.
    Gov NS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011921. PubMed ID: 17358198
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lipid bilayer and cytoskeletal interactions in a red blood cell.
    Peng Z; Li X; Pivkin IV; Dao M; Karniadakis GE; Suresh S
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13356-61. PubMed ID: 23898181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram.
    Biben T; Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031921. PubMed ID: 21517537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
    Fedosov DA; Caswell B; Karniadakis GE
    Biophys J; 2010 May; 98(10):2215-25. PubMed ID: 20483330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orientation and dynamics of a vesicle in tank-treading motion in shear flow.
    Kantsler V; Steinberg V
    Phys Rev Lett; 2005 Dec; 95(25):258101. PubMed ID: 16384512
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of membrane reference state on shape memory of a red blood cell.
    Gou Z; Ruan X; Huang F; Fu X
    Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):465-474. PubMed ID: 30714397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoscope.
    Sutera SP; Pierre PR; Zahalak GI
    Biorheology; 1989; 26(2):177-97. PubMed ID: 2605327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deformation and orientation of red blood cells in a simple shear flow. Theoretical study and approach at small angle light scattering.
    Stoltz JF; Ravey JC; Larcan A; Mazeron P; Lucius M; Guillot M
    Scand J Clin Lab Invest Suppl; 1981; 156():67-75. PubMed ID: 6798684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow.
    Tran-Son-Tay R; Sutera SP; Zahalak GI; Rao PR
    Biophys J; 1987 Jun; 51(6):915-24. PubMed ID: 3607212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW; Hsu R
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow.
    Fischer TM; Stöhr-Lissen M; Schmid-Schönbein H
    Science; 1978 Nov; 202(4370):894-6. PubMed ID: 715448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rheology of a dilute suspension of liquid-filled elastic capsules.
    Bagchi P; Kalluri RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056320. PubMed ID: 20866335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.