These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23213631)

  • 1. Assessing the plasmonics of gold nano-triangles with higher order laser modes.
    Hennemann LE; Kolloch A; Kern A; Mihaljevic J; Boneberg J; Leiderer P; Meixner AJ; Zhang D
    Beilstein J Nanotechnol; 2012; 3():674-83. PubMed ID: 23213631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-dependent SERS at differently oriented single gold nanorods.
    Jiao J; Wang X; Wackenhut F; Horneber A; Chen L; Failla AV; Meixner AJ; Zhang D
    Chemphyschem; 2012 Mar; 13(4):952-8. PubMed ID: 22378600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
    Gopinath A; Boriskina SV; Reinhard BM; Dal Negro L
    Opt Express; 2009 Mar; 17(5):3741-53. PubMed ID: 19259215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection.
    Lospinoso D; Colombelli A; Lomascolo M; Rella R; Manera MG
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of plasmonic resonances in nanotriangles.
    Dickreuter S; Gleixner J; Kolloch A; Boneberg J; Scheer E; Leiderer P
    Beilstein J Nanotechnol; 2013; 4():588-602. PubMed ID: 24205453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic "nano-fingers on nanowires" as SERS substrates.
    Sharma Y; Dhawan A
    Opt Lett; 2016 May; 41(9):2085-8. PubMed ID: 27128080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.
    Ni H; Wang M; Shen T; Zhou J
    ACS Nano; 2015 Feb; 9(2):1913-25. PubMed ID: 25639937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Enhanced Raman Scattering on Regular Arrays of Gold Nanostructures: Impact of Long-Range Interactions and the Surrounding Medium.
    Ragheb I; Braïk M; Lau-Truong S; Belkhir A; Rumyantseva A; Kostcheev S; Adam PM; Chevillot-Biraud A; Lévi G; Aubard J; Boubekeur-Lecaque L; Félidj N
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33158228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects.
    D'Orlando A; Bayle M; Louarn G; Humbert B
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles.
    Kong L; Lee C; Earhart CM; Cordovez B; Chan JW
    Opt Express; 2015 Mar; 23(5):6793-802. PubMed ID: 25836898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers.
    Tripathy S; Marty R; Lin VK; Teo SL; Ye E; Arbouet A; Saviot L; Girard C; Han MY; Mlayah A
    Nano Lett; 2011 Feb; 11(2):431-7. PubMed ID: 21214216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field imaging of surface plasmon on gold nano-dots fabricated by scanning probe lithography.
    Kim J; Kim J; Song KI; Lee SQ; Kim EU; Choi SE; Lee Y; Park KH
    J Microsc; 2003 Mar; 209(Pt 3):236-40. PubMed ID: 12641768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography.
    Weber-Bargioni A; Schwartzberg A; Schmidt M; Harteneck B; Ogletree DF; Schuck PJ; Cabrini S
    Nanotechnology; 2010 Feb; 21(6):065306. PubMed ID: 20061594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing nanoscale optical properties and morphology in perfluoropentacene films by confocal and tip-enhanced near-field optical microscopy and spectroscopy.
    Wang X; Broch K; Schreiber F; Meixner AJ; Zhang D
    Phys Chem Chem Phys; 2016 Jun; 18(23):15919-26. PubMed ID: 27241888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Randomization of gold nano-brick arrays: a tool for SERS enhancement.
    Nishijima Y; Khurgin JB; Rosa L; Fujiwara H; Juodkazis S
    Opt Express; 2013 Jun; 21(11):13502-14. PubMed ID: 23736603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field study on the transition from localized to propagating plasmons on 2D nano-triangles.
    Weber T; Kiel T; Irsen S; Busch K; Linden S
    Opt Express; 2017 Jul; 25(15):16947-16956. PubMed ID: 28789194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.