BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23214135)

  • 1. [Selected aspects of amyloidogenesis].
    Stepkowski D
    Postepy Biochem; 2012; 58(1):110-4. PubMed ID: 23214135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases.
    Bellotti V; Chiti F
    Curr Opin Struct Biol; 2008 Dec; 18(6):771-9. PubMed ID: 18952166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade.
    Chiti F; Dobson CM
    Annu Rev Biochem; 2017 Jun; 86():27-68. PubMed ID: 28498720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein amyloidose misfolding: mechanisms, detection, and pathological implications.
    Jeyashekar NS; Sadana A; Vo-Dinh T
    Methods Mol Biol; 2005; 300():417-35. PubMed ID: 15657495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein aggregation diseases: toxicity of soluble prefibrillar aggregates and their clinical significance.
    Stefani M
    Methods Mol Biol; 2010; 648():25-41. PubMed ID: 20700703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition diseases and 3D domain swapping.
    Bennett MJ; Sawaya MR; Eisenberg D
    Structure; 2006 May; 14(5):811-24. PubMed ID: 16698543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High hydrostatic pressure dissociates early aggregates of TTR105-115, but not the mature amyloid fibrils.
    Dirix C; Meersman F; MacPhee CE; Dobson CM; Heremans K
    J Mol Biol; 2005 Apr; 347(5):903-9. PubMed ID: 15784251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Amyloidosis: a model of misfolded protein disorder].
    Grateau G; Verine J; Delpech M; Ries M
    Med Sci (Paris); 2005; 21(6-7):627-33. PubMed ID: 15985206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.
    Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE
    J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring disappearance of monomers and generation of resistance to proteolysis during the formation of the activation domain of human procarboxypeptidase A2 (ADA2h) amyloid fibrils by matrix-assisted laser-desorption ionization-time-of-flight-MS.
    Villanueva J; Villegas V; Querol E; Avilés FX; Serrano L
    Biochem J; 2003 Sep; 374(Pt 2):489-95. PubMed ID: 12765547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prion-like aggregates: infectious agents in human disease.
    Westermark GT; Westermark P
    Trends Mol Med; 2010 Nov; 16(11):501-7. PubMed ID: 20870462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. R104H may suppress transthyretin amyloidogenesis by thermodynamic stabilization, but not by the kinetic mechanism characterizing T119 interallelic trans-suppression.
    Sekijima Y; Dendle MT; Wiseman RL; White JT; D'Haeze W; Kelly JW
    Amyloid; 2006 Jun; 13(2):57-66. PubMed ID: 16911959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods to study the structure of misfolded protein states in systemic amyloidosis.
    Fändrich M; Schmidt M
    Biochem Soc Trans; 2021 Apr; 49(2):977-985. PubMed ID: 33929491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the mechanisms of protein misfolding and aggregation in amyloidogenic diseases derived from pressure studies.
    Foguel D; Silva JL
    Biochemistry; 2004 Sep; 43(36):11361-70. PubMed ID: 15350123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rosetta Stone for Amyloid Fibrils: The Key Role of Ring-Like Oligomers in Amyloidogenesis.
    Galzitskaya OV; Selivanova OM
    J Alzheimers Dis; 2017; 59(3):785-795. PubMed ID: 28671122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein folding, misfolding, aggregation and their implications in human diseases: discovering therapeutic ways to amyloid-associated diseases.
    Iram A; Naeem A
    Cell Biochem Biophys; 2014 Sep; 70(1):51-61. PubMed ID: 24639112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils.
    El-Agnaf OM; Nagala S; Patel BP; Austen BM
    J Mol Biol; 2001 Jun; 310(1):157-68. PubMed ID: 11419943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.