BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23214521)

  • 1. Minimal model for the inelastic mechanics of biopolymer networks and cells.
    Wolff L; Kroy K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):040901. PubMed ID: 23214521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the stiffening-softening paradox in cell mechanics.
    Wolff L; Fernández P; Kroy K
    PLoS One; 2012; 7(7):e40063. PubMed ID: 22815724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.
    Kurniawan NA; Wong LH; Rajagopalan R
    Biomacromolecules; 2012 Mar; 13(3):691-8. PubMed ID: 22293015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective-medium approach for stiff polymer networks with flexible cross-links.
    Broedersz CP; Storm C; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061914. PubMed ID: 19658531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two fundamental mechanisms govern the stiffening of cross-linked networks.
    Žagar G; Onck PR; van der Giessen E
    Biophys J; 2015 Mar; 108(6):1470-1479. PubMed ID: 25809259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical mechanics of double-helical polymers.
    De Col A; Liverpool TB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061907. PubMed ID: 15244617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretching dynamics of semiflexible polymers.
    Obermayer B; Hallatschek O; Frey E; Kroy K
    Eur Phys J E Soft Matter; 2007 Aug; 23(4):375-88. PubMed ID: 17728980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening.
    van Oosten AS; Vahabi M; Licup AJ; Sharma A; Galie PA; MacKintosh FC; Janmey PA
    Sci Rep; 2016 Jan; 6():19270. PubMed ID: 26758452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of architecture in the elastic response of semiflexible polymer and fiber networks.
    Heussinger C; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011917. PubMed ID: 17358194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poroelasticity of (bio)polymer networks during compression: theory and experiment.
    Punter MTJJM; Vos BE; Mulder BM; Koenderink GH
    Soft Matter; 2020 Feb; 16(5):1298-1305. PubMed ID: 31922166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact theory of kinkable elastic polymers.
    Wiggins PA; Phillips R; Nelson PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021909. PubMed ID: 15783354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers.
    Broedersz CP; Storm C; MacKintosh FC
    Phys Rev Lett; 2008 Sep; 101(11):118103. PubMed ID: 18851336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tension dynamics in semiflexible polymers. I. Coarse-grained equations of motion.
    Hallatschek O; Frey E; Kroy K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031905. PubMed ID: 17500724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the precise meaning of extension in the interpretation of polymer-chain stretching experiments.
    Neumann RM
    Biophys J; 2003 Nov; 85(5):3418-20. PubMed ID: 14581242
    [No Abstract]   [Full Text] [Related]  

  • 17. Nonlinear Mechanics of Athermal Branched Biopolymer Networks.
    Rens R; Vahabi M; Licup AJ; MacKintosh FC; Sharma A
    J Phys Chem B; 2016 Jul; 120(26):5831-41. PubMed ID: 26901575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic regimes of subisostatic athermal fiber networks.
    Licup AJ; Sharma A; MacKintosh FC
    Phys Rev E; 2016 Jan; 93(1):012407. PubMed ID: 26871101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain stiffening in synthetic and biopolymer networks.
    Erk KA; Henderson KJ; Shull KR
    Biomacromolecules; 2010 May; 11(5):1358-63. PubMed ID: 20392048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.