These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23214522)

  • 41. Role of Correlations in the Collective Behavior of Microswimmer Suspensions.
    Stenhammar J; Nardini C; Nash RW; Marenduzzo D; Morozov A
    Phys Rev Lett; 2017 Jul; 119(2):028005. PubMed ID: 28753351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of swarm configuration on fluid transport during vertical collective motion.
    Wilhelmus MM; Nawroth J; Rallabandi B; Dabiri JO
    Bioinspir Biomim; 2019 Nov; 15(1):015002. PubMed ID: 31509804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
    Forest MG; Wang Q; Zhou R
    Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diffusion and spatial correlations in suspensions of swimming particles.
    Underhill PT; Hernandez-Ortiz JP; Graham MD
    Phys Rev Lett; 2008 Jun; 100(24):248101. PubMed ID: 18643631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion.
    Clopés J; Gompper G; Winkler RG
    Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coherent structures in monolayers of swimming particles.
    Ishikawa T; Pedley TJ
    Phys Rev Lett; 2008 Feb; 100(8):088103. PubMed ID: 18352669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of viscoelasticity on the collective behavior of swimming microorganisms.
    Bozorgi Y; Underhill PT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061901. PubMed ID: 22304110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multifractal dynamics of turbulent flows in swimming bacterial suspensions.
    Liu KA; I L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011924. PubMed ID: 23005469
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrodynamics of a microhunter: a chemotactic scenario.
    Najafi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):060902. PubMed ID: 21797295
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gyrotactic cluster formation of bottom-heavy squirmers.
    Rühle F; Zantop AW; Stark H
    Eur Phys J E Soft Matter; 2022 Mar; 45(3):26. PubMed ID: 35304659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective viscosity of puller-like microswimmers: a renormalization approach.
    Gluzman S; Karpeev DA; Berlyand LV
    J R Soc Interface; 2013 Dec; 10(89):20130720. PubMed ID: 24068178
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The long-time dynamics of two hydrodynamically-coupled swimming cells.
    Michelin S; Lauga E
    Bull Math Biol; 2010 May; 72(4):973-1005. PubMed ID: 20013354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape.
    Locsei JT; Pedley TJ
    Bull Math Biol; 2009 Jul; 71(5):1089-116. PubMed ID: 19198954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Confinement stabilizes a bacterial suspension into a spiral vortex.
    Wioland H; Woodhouse FG; Dunkel J; Kessler JO; Goldstein RE
    Phys Rev Lett; 2013 Jun; 110(26):268102. PubMed ID: 23848925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic rheology of active particle suspensions: Kinetic theory.
    Alonso-Matilla R; Ezhilan B; Saintillan D
    Biomicrofluidics; 2016 Jul; 10(4):043505. PubMed ID: 27375827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The orientation of swimming biflagellates in shear flows.
    O'Malley S; Bees MA
    Bull Math Biol; 2012 Jan; 74(1):232-55. PubMed ID: 21744179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion.
    Dehkharghani A; Waisbord N; Dunkel J; Guasto JS
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11119-11124. PubMed ID: 31097583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrodynamics of confined active fluids.
    Brotto T; Caussin JB; Lauga E; Bartolo D
    Phys Rev Lett; 2013 Jan; 110(3):038101. PubMed ID: 23373953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of hydrodynamic interactions in chemotaxis of bacterial populations.
    Ryan SD
    Phys Biol; 2019 Dec; 17(1):016003. PubMed ID: 31726435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.