These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23214532)

  • 1. Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators.
    Thomas P; Grima R; Straube AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041110. PubMed ID: 23214532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions.
    Thomas P; Straube AV; Grima R
    BMC Syst Biol; 2012 May; 6():39. PubMed ID: 22583770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic enzyme kinetics and the quasi-steady-state reductions: Application of the slow scale linear noise approximation à la Fenichel.
    Eilertsen J; Srivastava K; Schnell S
    J Math Biol; 2022 Jul; 85(1):3. PubMed ID: 35776210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model reduction for slow-fast stochastic systems with metastable behaviour.
    Bruna M; Chapman SJ; Smith MJ
    J Chem Phys; 2014 May; 140(17):174107. PubMed ID: 24811625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic phase transition operator.
    Yamanobe T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011924. PubMed ID: 21867230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks.
    Thomas P; Straube AV; Grima R
    J Chem Phys; 2011 Nov; 135(18):181103. PubMed ID: 22088045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic analysis of Chemical Reaction Networks using Linear Noise Approximation.
    Cardelli L; Kwiatkowska M; Laurenti L
    Biosystems; 2016 Nov; 149():26-33. PubMed ID: 27816736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?
    Eilertsen J; Schnell S
    Bull Math Biol; 2021 Nov; 84(1):7. PubMed ID: 34825985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear noise approximation is valid over limited times for any chemical system that is sufficiently large.
    Wallace EW; Gillespie DT; Sanft KR; Petzold LR
    IET Syst Biol; 2012 Aug; 6(4):102-15. PubMed ID: 23039691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origins of approximations for stochastic chemical kinetics.
    Haseltine EL; Rawlings JB
    J Chem Phys; 2005 Oct; 123(16):164115. PubMed ID: 16268689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How spatial heterogeneity shapes multiscale biochemical reaction network dynamics.
    Pfaffelhuber P; Popovic L
    J R Soc Interface; 2015 Mar; 12(104):20141106. PubMed ID: 25652460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic cellular automata model of neural networks.
    Goltsev AV; de Abreu FV; Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061921. PubMed ID: 20866454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.
    Lawson MJ; Petzold L; Hellander A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks.
    Li C; Chen L; Aihara K
    Chaos; 2008 Jun; 18(2):023132. PubMed ID: 18601498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A markov model based analysis of stochastic biochemical systems.
    Ghosh P; Ghosh S; Basu K; Das SK
    Comput Syst Bioinformatics Conf; 2007; 6():121-32. PubMed ID: 17951818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-order ultrasensitivity: a study of criticality and fluctuations under the total quasi-steady state approximation in the linear noise regime.
    Jithinraj PK; Roy U; Gopalakrishnan M
    J Theor Biol; 2014 Mar; 344():1-11. PubMed ID: 24309434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.