These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23214572)

  • 1. Tuning spreading and avalanche-size exponents in directed percolation with modified activation probabilities.
    Landes F; Rosso A; Jagla EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041150. PubMed ID: 23214572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avalanche and spreading exponents in systems with absorbing states.
    Muñoz MA; Dickman R; Vespignani A; Zapperi S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):6175-9. PubMed ID: 11969602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorbing-state phase transitions with extremal dynamics.
    Dickman R; Garcia GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066113. PubMed ID: 16089826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed percolation criticality due to stochastic switching between attractive and repulsive coupling in coupled circle maps.
    Sonawane AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056206. PubMed ID: 20866306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for directed percolation universality at the onset of spatiotemporal intermittency in coupled circle maps.
    Janaki TM; Sinha S; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056218. PubMed ID: 12786261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized criticality and absorbing states: lessons from the Ising model.
    Pruessner G; Peters O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025106. PubMed ID: 16605383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-absorbing-state phase transition beyond directed percolation: a class of exactly solvable models.
    Basu U; Mohanty PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041143. PubMed ID: 19518209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed percolation criticality in turbulent liquid crystals.
    Takeuchi KA; Kuroda M; Chaté H; Sano M
    Phys Rev Lett; 2007 Dec; 99(23):234503. PubMed ID: 18233372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pair contact process in two dimensions.
    Kamphorst Leal Da Silva J; Dickman R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5126-9. PubMed ID: 11970379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical scaling behavior of the one-dimensional conserved directed-percolation universality class.
    Kwon S; Kim Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051119. PubMed ID: 23004715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generic sandpile models have directed percolation exponents.
    Mohanty PK; Dhar D
    Phys Rev Lett; 2002 Sep; 89(10):104303. PubMed ID: 12225197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical behavior of absorbing phase transitions for models in the Manna class with natural initial states.
    Lee SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062133. PubMed ID: 25019750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criticality and scaling behavior of percolation with multiple giant clusters under an Achlioptas process.
    Zhang Y; Wei W; Guo B; Zhang R; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062103. PubMed ID: 24483382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Percolation model with continuously varying exponents.
    Andrade RF; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042122. PubMed ID: 24229131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossover from isotropic to directed percolation.
    Zhou Z; Yang J; Ziff RM; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021102. PubMed ID: 23005718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical exponents of the explosive percolation transition.
    da Costa RA; Dorogovtsev SN; Goltsev AV; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042148. PubMed ID: 24827233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling exponents of rough surfaces generated by the Domany-Kinzel cellular automaton.
    Atman AP; Dickman R; Moreira JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016113. PubMed ID: 12241432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling behavior of the contact process in networks with long-range connections.
    Juhász R; Odor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041123. PubMed ID: 19905289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized contact process with n absorbing states.
    Hooyberghs J; Carlon E; Vanderzande C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036124. PubMed ID: 11580411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton.
    Mendonça JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):012102. PubMed ID: 21405729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.