These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 23214573)

  • 1. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions.
    Calabrese P; Le Doussal P
    Phys Rev Lett; 2011 Jun; 106(25):250603. PubMed ID: 21770622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal fluctuations in Kardar-Parisi-Zhang growth on one-dimensional flat substrates.
    Oliveira TJ; Ferreira SC; Alves SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010601. PubMed ID: 22400503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality.
    Sasamoto T; Spohn H
    Phys Rev Lett; 2010 Jun; 104(23):230602. PubMed ID: 20867222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics.
    Halpin-Healy T; Lin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010103. PubMed ID: 24580153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unpredicted Scaling of the One-Dimensional Kardar-Parisi-Zhang Equation.
    Fontaine C; Vercesi F; Brachet M; Canet L
    Phys Rev Lett; 2023 Dec; 131(24):247101. PubMed ID: 38181147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of the Kardar-Parisi-Zhang equation.
    Miranda VG; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031134. PubMed ID: 18517356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformal invariance of isoheight lines in a two-dimensional Kardar-Parisi-Zhang surface.
    Saberi AA; Niry MD; Fazeli SM; Rahimi Tabar MR; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051607. PubMed ID: 18643079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class.
    Takeuchi KA
    Phys Rev Lett; 2013 May; 110(21):210604. PubMed ID: 23745853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact short-time height distribution for the flat Kardar-Parisi-Zhang interface.
    Smith NR; Meerson B
    Phys Rev E; 2018 May; 97(5-1):052110. PubMed ID: 29906837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum of an Airy process plus Brownian motion and memory in Kardar-Parisi-Zhang growth.
    Le Doussal P
    Phys Rev E; 2017 Dec; 96(6-1):060101. PubMed ID: 29347397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula.
    Fukai YT; Takeuchi KA
    Phys Rev Lett; 2020 Feb; 124(6):060601. PubMed ID: 32109110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation.
    Carrasco IS; Oliveira TJ
    Phys Rev E; 2016 Nov; 94(5-1):050801. PubMed ID: 27967078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation with Brownian initial condition.
    Krajenbrink A; Le Doussal P
    Phys Rev E; 2017 Aug; 96(2-1):020102. PubMed ID: 28950487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling.
    Chame A; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051104. PubMed ID: 12513464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer.
    Santalla SN; Rodríguez-Laguna J; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010401. PubMed ID: 24580156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sinc noise for the Kardar-Parisi-Zhang equation.
    Niggemann O; Hinrichsen H
    Phys Rev E; 2018 Jun; 97(6-1):062125. PubMed ID: 30011492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal and nonuniversal features in the crossover from linear to nonlinear interface growth.
    Oliveira TJ; Dechoum K; Redinz JA; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011604. PubMed ID: 16907104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universality in two-dimensional Kardar-Parisi-Zhang growth.
    Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021610. PubMed ID: 14995461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.