BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23214619)

  • 1. Spatial propagation of excitonic coherence enables ratcheted energy transfer.
    Hoyer S; Ishizaki A; Whaley KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041911. PubMed ID: 23214619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical master equation for excitonic transport under the influence of an environment.
    Eisfeld A; Briggs JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046118. PubMed ID: 22680549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex.
    Yeh SH; Kais S
    J Chem Phys; 2014 Dec; 141(23):234105. PubMed ID: 25527917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein.
    Saito S; Higashi M; Fleming GR
    J Phys Chem B; 2019 Nov; 123(46):9762-9772. PubMed ID: 31657928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature.
    Ishizaki A; Fleming GR
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17255-60. PubMed ID: 19815512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.
    Thilagam A
    J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex quantum network model of energy transfer in photosynthetic complexes.
    Ai BQ; Zhu SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061917. PubMed ID: 23367985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment-assisted quantum walks in photosynthetic energy transfer.
    Mohseni M; Rebentrost P; Lloyd S; Aspuru-Guzik A
    J Chem Phys; 2008 Nov; 129(17):174106. PubMed ID: 19045332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex.
    Kim HW; Kelly A; Park JW; Rhee YM
    J Am Chem Soc; 2012 Jul; 134(28):11640-51. PubMed ID: 22708971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of energy transport in the Fenna-Matthews-Olson complex via site-varying pigment-protein interactions.
    Oh SA; Coker DF; Hutchinson DAW
    J Chem Phys; 2019 Feb; 150(8):085102. PubMed ID: 30823745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalence of quantum and classical coherence in electronic energy transfer.
    Briggs JS; Eisfeld A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051911. PubMed ID: 21728575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of quantum coherence and environmental fluctuations in chromophoric energy transport.
    Rebentrost P; Mohseni M; Aspuru-Guzik A
    J Phys Chem B; 2009 Jul; 113(29):9942-7. PubMed ID: 19603843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained geometric dynamics of the Fenna-Matthews-Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer.
    Fokas AS; Cole DJ; Chin AW
    Photosynth Res; 2014 Dec; 122(3):275-92. PubMed ID: 25034014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy.
    Han D; Xue B; Du J; Kobayashi T; Miyatake T; Tamiaki H; Xing X; Yuan W; Li Y; Leng Y
    Phys Chem Chem Phys; 2016 Sep; 18(35):24252-60. PubMed ID: 27531576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment.
    Tao MJ; Ai Q; Deng FG; Cheng YC
    Sci Rep; 2016 Jun; 6():27535. PubMed ID: 27277702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting.
    Huo P; Coker DF
    J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer.
    Duan HG; Prokhorenko VI; Cogdell RJ; Ashraf K; Stevens AL; Thorwart M; Miller RJD
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8493-8498. PubMed ID: 28743751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton transfer dynamics and quantumness of energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Braun D; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041926. PubMed ID: 22181194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport.
    León-Montiel Rde J; Kassal I; Torres JP
    J Phys Chem B; 2014 Sep; 118(36):10588-94. PubMed ID: 25141219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.