BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23214644)

  • 1. Observation of multifractal intermittent dust-acoustic-wave turbulence.
    Tsai YY; Chang MC; Lin I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):045402. PubMed ID: 23214644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressible turbulent mixing: Effects of Schmidt number.
    Ni Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053020. PubMed ID: 26066261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifractal dynamics of turbulent flows in swimming bacterial suspensions.
    Liu KA; I L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011924. PubMed ID: 23005469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence.
    Lin PC; I L
    Phys Rev Lett; 2018 Mar; 120(13):135004. PubMed ID: 29694209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-origin of no-trough trapping in self-excited nonlinear dust acoustic waves.
    Chang MC; Teng LW; I L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046410. PubMed ID: 22680589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction.
    Pal N; Perlekar P; Gupta A; Pandit R
    Phys Rev E; 2016 Jun; 93(6):063115. PubMed ID: 27415366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Coherent Excitations in Microscopic Acoustic Wave Turbulence of Cold Dusty Plasma Liquids.
    Hu HW; Wang W; I L
    Phys Rev Lett; 2019 Aug; 123(6):065002. PubMed ID: 31491159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density and tracer statistics in compressible turbulence: Phase transition to multifractality.
    Fouxon I; Mond M
    Phys Rev E; 2019 Aug; 100(2-1):023111. PubMed ID: 31574601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of gravity-capillary wave turbulence.
    Falcon E; Laroche C; Fauve S
    Phys Rev Lett; 2007 Mar; 98(9):094503. PubMed ID: 17359160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global scale-invariant dissipation in collisionless plasma turbulence.
    Kiyani KH; Chapman SC; Khotyaintsev YV; Dunlop MW; Sahraoui F
    Phys Rev Lett; 2009 Aug; 103(7):075006. PubMed ID: 19792654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single to multiple acoustic vortex excitations in the transition to defect-mediated dust acoustic wave turbulence.
    Tsai JY; Lin PC; I L
    Phys Rev E; 2020 Feb; 101(2-1):023210. PubMed ID: 32168674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of intermittent multifractal turbulence in fully kinetic simulations of magnetic reconnection.
    Leonardis E; Chapman SC; Daughton W; Roytershteyn V; Karimabadi H
    Phys Rev Lett; 2013 May; 110(20):205002. PubMed ID: 25167422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation.
    Ghosh S; Chaudhuri TK; Sarkar S; Khan M; Gupta MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):037401. PubMed ID: 11909324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal power spectrum of irradiance fluctuations for a Gaussian-beam wave propagating through non-Kolmogorov turbulence.
    Tan L; Zhai C; Yu S; Ma J; Lu G
    Opt Express; 2015 May; 23(9):11250-63. PubMed ID: 25969221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves.
    Gupta MR; Sarkar S; Ghosh S; Debnath M; Khan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046406. PubMed ID: 11308955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.
    Tsai YY; I L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013106. PubMed ID: 25122400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.
    Kumar J; Ananthakrishna G
    Phys Rev E; 2018 Jan; 97(1-1):012201. PubMed ID: 29448439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Log-amplitude variance for a Gaussian-beam wave propagating through non-Kolmogorov turbulence.
    Tan L; Du W; Ma J; Yu S; Han Q
    Opt Express; 2010 Jan; 18(2):451-62. PubMed ID: 20173865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering and energy spectra in two-dimensional dusty gas turbulence.
    Pandey V; Perlekar P; Mitra D
    Phys Rev E; 2019 Jul; 100(1-1):013114. PubMed ID: 31499820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weak turbulence in dusty plasmas with collisional dust charging: Quasilinear wave-particle interaction.
    Galvão RA; Ziebell LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023102. PubMed ID: 26382530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.