These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23214683)

  • 21. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone.
    Uyusur B; Darnault CJ; Snee PT; Kokën E; Jacobson AR; Wells RR
    J Contam Hydrol; 2010 Nov; 118(3-4):184-98. PubMed ID: 21056511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamics in two-phase flow within porous media.
    Anadon LD; Lim MH; Sederman AJ; Gladden LF
    Magn Reson Imaging; 2005 Feb; 23(2):291-4. PubMed ID: 15833629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drainage in two-dimensional porous media: from capillary fingering to viscous flow.
    Cottin C; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046315. PubMed ID: 21230398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capillary flooding of wood with microemulsions from Winsor I systems.
    Carrillo CA; Saloni D; Lucia LA; Hubbe MA; Rojas OJ
    J Colloid Interface Sci; 2012 Sep; 381(1):171-9. PubMed ID: 22721790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using wavelets to characterize the wettability of porous materials.
    Sygouni V; Tsakiroglou CD; Payatakes AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056304. PubMed ID: 18233753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic flows of wormlike micellar solutions.
    Zhao Y; Cheung P; Shen AQ
    Adv Colloid Interface Sci; 2014 Sep; 211():34-46. PubMed ID: 24958278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-phase fluid flow in geometric packing.
    Paiva AS; Oliveira RS; Andrade RF
    Philos Trans A Math Phys Eng Sci; 2015 Dec; 373(2056):. PubMed ID: 26527816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extension of the dielectric breakdown model for simulation of viscous fingering at finite viscosity ratios.
    Doorwar S; Mohanty KK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013028. PubMed ID: 25122390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media.
    Costanza-Robinson MS; Zheng Z; Henry EJ; Estabrook BD; Littlefield MH
    Environ Sci Technol; 2012 Oct; 46(20):11206-12. PubMed ID: 23033988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale effects on resistivity index of porous media.
    Aggelopoulos C; Klepetsanis P; Theodoropoulou MA; Pomoni K; Tsakiroglou CD
    J Contam Hydrol; 2005 May; 77(4):299-323. PubMed ID: 15854721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram.
    Syed HK; Peh KK
    Acta Pol Pharm; 2014; 71(2):301-9. PubMed ID: 25272651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging biofilm in porous media using X-ray computed microtomography.
    Davit Y; Iltis G; Debenest G; Veran-Tissoires S; Wildenschild D; Gerino M; Quintard M
    J Microsc; 2011 Apr; 242(1):15-25. PubMed ID: 21118226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging of compositional gradients during in situ emulsification using X-ray micro-tomography.
    Unsal E; Rücker M; Berg S; Bartels WB; Bonnin A
    J Colloid Interface Sci; 2019 Aug; 550():159-169. PubMed ID: 31071522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics and stability of two-potential flows in the porous media.
    Markicevic B; Bijeljic B; Navaz HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic exploration of the phase diagram of a surfactant/water binary system.
    Leng J; Joanicot M; Ajdari A
    Langmuir; 2007 Feb; 23(5):2315-7. PubMed ID: 17266344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.