These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A two-component mixture of charged particles confined in a channel: melting. Ferreira WP; Farias GA; Peeters FM J Phys Condens Matter; 2010 Jul; 22(28):285103. PubMed ID: 21399292 [TBL] [Abstract][Full Text] [Related]
7. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths. Gapinski J; Nägele G; Patkowski A J Chem Phys; 2014 Sep; 141(12):124505. PubMed ID: 25273449 [TBL] [Abstract][Full Text] [Related]
8. Parity effect and phase transitions in quantum Szilard engines. Lu Y; Long GL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011125. PubMed ID: 22400530 [TBL] [Abstract][Full Text] [Related]
9. Intrinsic focusing of the particle size distribution in colloids containing nanocrystals of two different crystal phases. Voss B; Haase M ACS Nano; 2013 Dec; 7(12):11242-54. PubMed ID: 24206197 [TBL] [Abstract][Full Text] [Related]
10. Glass-transition properties of Yukawa potentials: from charged point particles to hard spheres. Yazdi A; Ivlev A; Khrapak S; Thomas H; Morfill GE; Löwen H; Wysocki A; Sperl M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063105. PubMed ID: 25019902 [TBL] [Abstract][Full Text] [Related]
11. Phase diagram of mixtures of hard colloidal spheres and discs: a free-volume scaled-particle approach. Oversteegen SM; Lekkerkerker HN J Chem Phys; 2004 Feb; 120(5):2470-4. PubMed ID: 15268388 [TBL] [Abstract][Full Text] [Related]
12. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension. Zangi R; Rice SA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213 [TBL] [Abstract][Full Text] [Related]
13. Melting transition of Lennard-Jones fluid in cylindrical pores. Das CK; Singh JK J Chem Phys; 2014 May; 140(20):204703. PubMed ID: 24880307 [TBL] [Abstract][Full Text] [Related]
14. Bond flexibility and low valence promote finite clusters of self-aggregating particles. Markova O; Alberts J; Munro E; Lenne PF Phys Rev Lett; 2012 Aug; 109(7):078101. PubMed ID: 23006403 [TBL] [Abstract][Full Text] [Related]
15. Two features at the two-dimensional freezing transitions. Wang Z; Qi W; Peng Y; Alsayed AM; Chen Y; Tong P; Han Y J Chem Phys; 2011 Jan; 134(3):034506. PubMed ID: 21261367 [TBL] [Abstract][Full Text] [Related]
16. The Widom-Rowlinson mixture on a sphere: elimination of exponential slowing down at first-order phase transitions. Fischer T; Vink RL J Phys Condens Matter; 2010 Mar; 22(10):104123. PubMed ID: 21389457 [TBL] [Abstract][Full Text] [Related]
17. Influence of liquid structure on the thermodynamics of freezing. Ronceray P; Harrowell P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052313. PubMed ID: 23767546 [TBL] [Abstract][Full Text] [Related]
18. Large equilibrium clusters in low-density aqueous suspensions of polyelectrolyte-liposome complexes: a phenomenological model. Bordi F; Cametti C; Diociaiuti M; Sennato S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):050401. PubMed ID: 16089511 [TBL] [Abstract][Full Text] [Related]
19. Clapeyron slope reversal in the melting curve of AuGa2 at 5.5 GPa. Geballe ZM; Raju SV; Godwal BK; Jeanloz R J Phys Condens Matter; 2013 Oct; 25(41):415401. PubMed ID: 24025237 [TBL] [Abstract][Full Text] [Related]