BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 23214780)

  • 1. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New models and predictions for Brownian coagulation of non-interacting spheres.
    Kelkar AV; Dong J; Franses EI; Corti DS
    J Colloid Interface Sci; 2013 Jan; 389(1):188-98. PubMed ID: 23036339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct numerical simulations of anisotropic diffusion of spherical particles in sedimentation.
    Hamid A; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022310. PubMed ID: 23496519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: virial expansions and simulation.
    Kędzierski M; Wajnryb E
    J Chem Phys; 2011 Oct; 135(16):164104. PubMed ID: 22047225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key role of hydrodynamic interactions in colloidal gelation.
    Furukawa A; Tanaka H
    Phys Rev Lett; 2010 Jun; 104(24):245702. PubMed ID: 20867312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct numerical simulations of electrophoresis of charged colloids.
    Kim K; Nakayama Y; Yamamoto R
    Phys Rev Lett; 2006 May; 96(20):208302. PubMed ID: 16803214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interactions in active colloidal crystal microrheology.
    Weeber R; Harting J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):057302. PubMed ID: 23214913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of hydrodynamic interactions in Brownian rod suspensions.
    Pryamitsyn V; Ganesan V
    J Chem Phys; 2008 Apr; 128(13):134901. PubMed ID: 18397101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal diffusion inside a spherical cell.
    Cervantes-Martínez AE; Ramírez-Saito A; Armenta-Calderón R; Ojeda-López MA; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):030402. PubMed ID: 21517444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques.
    Saadat A; Khomami B
    J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.
    Duval JF; Qian S
    J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pair diffusion, hydrodynamic interactions, and available volume in dense fluids.
    Mittal J; Hummer G
    J Chem Phys; 2012 Jul; 137(3):034110. PubMed ID: 22830686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of colloidal fouling by coupling a dynamically updating velocity profile and electric field interactions with Force Bias Monte Carlo methods for membrane filtration.
    Boyle PM; Houchens BC; Kim AS
    J Colloid Interface Sci; 2013 Jun; 399():77-86. PubMed ID: 23540433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method.
    Nakayama Y; Kim K; Yamamoto R
    Eur Phys J E Soft Matter; 2008 Aug; 26(4):361-8. PubMed ID: 19230114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields.
    Wysocki A; Löwen H
    J Phys Condens Matter; 2011 Jul; 23(28):284117. PubMed ID: 21709336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.