These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23214795)

  • 1. Nonlinear phase-field model for electrode-electrolyte interface evolution.
    Liang L; Qi Y; Xue F; Bhattacharya S; Harris SJ; Chen LQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051609. PubMed ID: 23214795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation processes due to the electrode-electrolyte interface in ionic solutions.
    Sanabria H; Miller JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051505. PubMed ID: 17279915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling.
    Bedeaux D; Kjelstrup S; Öttinger HC
    J Chem Phys; 2014 Sep; 141(12):124102. PubMed ID: 25273407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model.
    Lim JH; Choi J
    Small; 2007 Sep; 3(9):1504-7. PubMed ID: 17647256
    [No Abstract]   [Full Text] [Related]  

  • 6. Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition.
    Khan TR; Vimalanandan A; Marlow F; Erbe A; Rohwerder M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6221-7. PubMed ID: 23106645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transition in porous electrodes. III. For the case of a two component electrolyte.
    Kiyohara K; Shioyama H; Sugino T; Asaka K; Soneda Y; Imoto K; Kodama M
    J Chem Phys; 2013 Jun; 138(23):234704. PubMed ID: 23802973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface.
    Williamson MJ; Tromp RM; Vereecken PM; Hull R; Ross FM
    Nat Mater; 2003 Aug; 2(8):532-6. PubMed ID: 12872162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields.
    Soba A; González G; Calivar L; Marshall G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051612. PubMed ID: 23214798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strongly nonlinear dynamics of electrolytes in large ac voltages.
    Højgaard Olesen L; Bazant MZ; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011501. PubMed ID: 20866619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes.
    Kumar A; Arruda TM; Tselev A; Ivanov IN; Lawton JS; Zawodzinski TA; Butyaev O; Zayats S; Jesse S; Kalinin SV
    Sci Rep; 2013; 3():1621. PubMed ID: 23563856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-field-crystal simulation of nonequilibrium crystal growth.
    Tang S; Yu YM; Wang J; Li J; Wang Z; Guo Y; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012405. PubMed ID: 24580235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering thermodynamic consistency of the antitrapping model: a variational phase-field formulation for alloy solidification.
    Fang A; Mi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012402. PubMed ID: 23410339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-field-crystal study of solute trapping.
    Humadi H; Hoyt JJ; Provatas N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022404. PubMed ID: 23496523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolyte-dependent pairwise particle motion near electrodes at frequencies below 1 kHz.
    Hoggard JD; Sides PJ; Prieve DC
    Langmuir; 2007 Jun; 23(13):6983-90. PubMed ID: 17521204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism for modeling of electrochemical reactions.
    Cervenka P; Hrdlička J; Přibyl M; Snita D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041505. PubMed ID: 22680481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonic analysis of low-frequency bioelectrode behavior.
    Richardot A; McAdams ET
    IEEE Trans Med Imaging; 2002 Jun; 21(6):604-12. PubMed ID: 12166856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes.
    Cantrell DR; Inayat S; Taflove A; Ruoff RS; Troy JB
    J Neural Eng; 2008 Mar; 5(1):54-67. PubMed ID: 18310811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing ice crystal growth behavior under electric field using phase field method.
    He ZZ; Liu J
    J Biomech Eng; 2009 Jul; 131(7):074502. PubMed ID: 19640138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-coupling and interface-pinning effects in the phase-field-crystal model.
    Huang ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012401. PubMed ID: 23410338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.