These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 23214870)
61. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model. Chin J; Boek ES; Coveney PV Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):547-58. PubMed ID: 16214694 [TBL] [Abstract][Full Text] [Related]
62. Elastically driven surface plumes in rimming flow of a non-Newtonian fluid. Seiden G; Steinberg V Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056320. PubMed ID: 23214888 [TBL] [Abstract][Full Text] [Related]
63. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall. Suslov SA; Ooi A; Manasseh R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208 [TBL] [Abstract][Full Text] [Related]
64. Some properties of two-dimensional stochastic regimes of double-diffusive convection in plane layer. Sibgatullin IN; Gertsenstein SJ; Sibgatullin NR Chaos; 2003 Dec; 13(4):1231-41. PubMed ID: 14604414 [TBL] [Abstract][Full Text] [Related]
65. Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Chabchoub A; Hoffmann N; Onorato M; Slunyaev A; Sergeeva A; Pelinovsky E; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056601. PubMed ID: 23214897 [TBL] [Abstract][Full Text] [Related]
66. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology. Gnann MV; Voigtmann T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416 [TBL] [Abstract][Full Text] [Related]
67. Transient shear banding in time-dependent fluids. Illa X; Puisto A; Lehtinen A; Mohtaschemi M; Alava MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022307. PubMed ID: 23496516 [TBL] [Abstract][Full Text] [Related]
68. Multistability in rotating spherical shell convection. Feudel F; Seehafer N; Tuckerman LS; Gellert M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023021. PubMed ID: 23496624 [TBL] [Abstract][Full Text] [Related]
69. Modeling the structure of liquids and crystals using one- and two-component modified phase-field crystal models. Robbins MJ; Archer AJ; Thiele U; Knobloch E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061408. PubMed ID: 23005097 [TBL] [Abstract][Full Text] [Related]
70. Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation. Zhao LC; Liu J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013201. PubMed ID: 23410451 [TBL] [Abstract][Full Text] [Related]
71. Rheology of polymer solutions using colloidal-probe atomic force microscopy. Darwiche A; Ingremeau F; Amarouchene Y; Maali A; Dufour I; Kellay H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062601. PubMed ID: 23848708 [TBL] [Abstract][Full Text] [Related]
72. Radial viscous fingering in yield stress fluids: onset of pattern formation. Fontana JV; Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013016. PubMed ID: 23410435 [TBL] [Abstract][Full Text] [Related]
73. Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number. Leoni M; Liverpool TB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):040901. PubMed ID: 22680412 [TBL] [Abstract][Full Text] [Related]
74. Interface pinning of immiscible gravity-exchange flows in porous media. Zhao B; MacMinn CW; Szulczewski ML; Neufeld JA; Huppert HE; Juanes R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023015. PubMed ID: 23496618 [TBL] [Abstract][Full Text] [Related]
75. Dipolar particles in an external field: Molecular dynamics simulation and mean field theory. Jia R; Hentschke R Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051502. PubMed ID: 20364987 [TBL] [Abstract][Full Text] [Related]
76. Capillary filling under electro-osmotic effects in the presence of electromagneto-hydrodynamic effects. Desai N; Ghosh U; Chakraborty S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063017. PubMed ID: 25019889 [TBL] [Abstract][Full Text] [Related]
77. Insulator, semiclassical oscillations and quantum Hall liquids at low magnetic fields. Lo ST; Wang YT; Bohra G; Comfort E; Lin TY; Kang MG; Strasser G; Bird JP; Huang CF; Lin LH; Chen JC; Liang CT J Phys Condens Matter; 2012 Oct; 24(40):405601. PubMed ID: 22968955 [TBL] [Abstract][Full Text] [Related]
78. Steady two-layer flows over an obstacle. Dias F; Vanden-Broeck JM Philos Trans A Math Phys Eng Sci; 2002 Oct; 360(1799):2137-54. PubMed ID: 12804231 [TBL] [Abstract][Full Text] [Related]
79. Stationary shapes of confined rotating magnetic liquid droplets. Lira SA; Miranda JA; Oliveira RM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036318. PubMed ID: 21230182 [TBL] [Abstract][Full Text] [Related]
80. Dynamics of a nonlocal discrete Gross-Pitaevskii equation with defects. Jian Y; Zhang AX; He CX; Qi XY; Xue JK Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053201. PubMed ID: 23767649 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]