These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23214871)

  • 1. Energy transfer in the Richtmyer-Meshkov instability.
    Thornber B; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056302. PubMed ID: 23214871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer in Rayleigh-Taylor instability.
    Cook AW; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026312. PubMed ID: 12241290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability.
    Liu H; Xiao Z
    Phys Rev E; 2016 May; 93(5):053112. PubMed ID: 27300983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of initial condition spectral content on shock-driven turbulent mixing.
    Nelson NJ; Grinstein FF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013014. PubMed ID: 26274276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence.
    Sen A; Mininni PD; Rosenberg D; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036319. PubMed ID: 23031025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations.
    Tritschler VK; Zubel M; Hickel S; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eddy diffusivity from hydromagnetic Taylor-Couette flow experiments.
    Gellert M; RĂ¼diger G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046314. PubMed ID: 19905443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations of three-dimensional Richtmyer-Meshkov instability on a membraneless gas bubble.
    Chu HY; Chen DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):051002. PubMed ID: 23767479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II.
    Abarzhi SI; Gauthier S; Sreenivasan KR
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous diffusion in confined turbulent convection.
    Boffetta G; De Lillo F; Musacchio S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066322. PubMed ID: 23005221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental study of the Richtmyer-Meshkov instability in microgravity.
    Niederhaus CE; Jacobs JW
    Ann N Y Acad Sci; 2004 Nov; 1027():403-13. PubMed ID: 15644371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field.
    Sun YB; Wang C
    Phys Rev E; 2020 May; 101(5-1):053110. PubMed ID: 32575244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically Induced Rotating Rayleigh-Taylor Instability.
    Scase MM; Baldwin KA; Hill RJ
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28287561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts.
    Cheng B; Glimm J; Sharp DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.