These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23214876)

  • 1. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056307. PubMed ID: 23214876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions.
    Muller PB; Rossi M; Marín AG; Barnkob R; Augustsson P; Laurell T; Kähler CJ; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023006. PubMed ID: 24032923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic streaming in lithotripsy fields: preliminary observation using a particle image velocimetry method.
    Choi MJ; Doh DH; Hwang TG; Cho CH; Paeng DG; Rim GH; Coleman AJ
    Ultrasonics; 2006 Feb; 44(2):133-45. PubMed ID: 16376400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces.
    Lei J
    Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical observations of acoustical radiation force effects on individual air bubbles.
    Palanchon P; Tortoli P; Bouakaz A; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):104-10. PubMed ID: 15742566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of acoustic streaming and heating using synchronized infrared thermography and particle image velocimetry.
    Layman CN; Sou IM; Bartak R; Ray C; Allen JS
    Ultrason Sonochem; 2011 Sep; 18(5):1258-61. PubMed ID: 21514205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field acoustic streaming jet.
    Moudjed B; Botton V; Henry D; Millet S; Garandet JP; Ben Hadid H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033011. PubMed ID: 25871206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the modulated acoustic radiation-force profile for a dual-beam confocal geometry.
    Giannoula A; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):461-70. PubMed ID: 23916667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.
    Kuznetsova LA; Bazou D; Coakley WT
    Langmuir; 2007 Mar; 23(6):3009-16. PubMed ID: 17286416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.
    Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K
    Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet.
    Rogers PR; Friend JR; Yeo LY
    Lab Chip; 2010 Nov; 10(21):2979-85. PubMed ID: 20737070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of flow behaviour and velocity induced by ultrasound using particle image velocimetry (PIV): Effect of fluid rheology, acoustic intensity and transducer tip size.
    O'Sullivan JJ; Espinoza CJU; Mihailova O; Alberini F
    Ultrason Sonochem; 2018 Nov; 48():218-230. PubMed ID: 30080545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.