These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23215108)

  • 1. Role of nuclear quadrupole coupling on decoherence and relaxation of central spins in quantum dots.
    Sinitsyn NA; Li Y; Crooker SA; Saxena A; Smith DL
    Phys Rev Lett; 2012 Oct; 109(16):166605. PubMed ID: 23215108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical pumping of a single hole spin in a quantum dot.
    Gerardot BD; Brunner D; Dalgarno PA; Ohberg P; Seidl S; Kroner M; Karrai K; Stoltz NG; Petroff PM; Warburton RJ
    Nature; 2008 Jan; 451(7177):441-4. PubMed ID: 18216849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the Nuclear Electric Quadrupolar Interaction on the Coherence Time of Hole and Electron Spins Confined in Semiconductor Quantum Dots.
    Hackmann J; Glasenapp P; Greilich A; Bayer M; Anders FB
    Phys Rev Lett; 2015 Nov; 115(20):207401. PubMed ID: 26613469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-dependent nuclear relaxation of spins 1/2 induced by dipole-dipole couplings to quadrupole spins: LaF3 crystals as an example.
    Kruk D; Lips O
    J Magn Reson; 2006 Apr; 179(2):250-62. PubMed ID: 16423544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetization-recovery experiments for static and MAS-NMR of I=3/2 nuclei.
    Yesinowski JP
    J Magn Reson; 2006 May; 180(1):147-61. PubMed ID: 16490373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical control of single hole spins in nanowire quantum dots.
    Pribiag VS; Nadj-Perge S; Frolov SM; van den Berg JW; van Weperen I; Plissard SR; Bakkers EP; Kouwenhoven LP
    Nat Nanotechnol; 2013 Mar; 8(3):170-4. PubMed ID: 23416794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.
    Fallahi P; Yilmaz ST; Imamoğlu A
    Phys Rev Lett; 2010 Dec; 105(25):257402. PubMed ID: 21231626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs.
    Botzem T; McNeil RP; Mol JM; Schuh D; Bougeard D; Bluhm H
    Nat Commun; 2016 Apr; 7():11170. PubMed ID: 27079269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin relaxation and decoherence of holes in quantum dots.
    Bulaev DV; Loss D
    Phys Rev Lett; 2005 Aug; 95(7):076805. PubMed ID: 16196813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Contributions to Mn(2+) Spin Dynamics in Colloidal Doped Quantum Dots.
    Schimpf AM; Ochsenbein ST; Gamelin DR
    J Phys Chem Lett; 2015 Feb; 6(3):457-63. PubMed ID: 26261963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.
    Chekhovich EA; Hopkinson M; Skolnick MS; Tartakovskii AI
    Nat Commun; 2015 Feb; 6():6348. PubMed ID: 25704639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.
    Dzhioev RI; Korenev VL
    Phys Rev Lett; 2007 Jul; 99(3):037401. PubMed ID: 17678325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In,Ga)As quantum dots.
    Li Y; Sinitsyn N; Smith DL; Reuter D; Wieck AD; Yakovlev DR; Bayer M; Crooker SA
    Phys Rev Lett; 2012 May; 108(18):186603. PubMed ID: 22681099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hole-nuclear spin interaction in quantum dots.
    Eble B; Testelin C; Desfonds P; Bernardot F; Balocchi A; Amand T; Miard A; Lemaître A; Marie X; Chamarro M
    Phys Rev Lett; 2009 Apr; 102(14):146601. PubMed ID: 19392463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of the electron spin relaxation induced by nuclei in quantum dots.
    Braun PF; Marie X; Lombez L; Urbaszek B; Amand T; Renucci P; Kalevich VK; Kavokin KV; Krebs O; Voisin P; Masumoto Y
    Phys Rev Lett; 2005 Mar; 94(11):116601. PubMed ID: 15903877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization and spin decoherence in heavy-hole quantum dots.
    Fischer J; Loss D
    Phys Rev Lett; 2010 Dec; 105(26):266603. PubMed ID: 21231694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically programmable electron spin memory using semiconductor quantum dots.
    Kroutvar M; Ducommun Y; Heiss D; Bichler M; Schuh D; Abstreiter G; Finley JJ
    Nature; 2004 Nov; 432(7013):81-4. PubMed ID: 15525984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hole spin relaxation in Ge-Si core-shell nanowire qubits.
    Hu Y; Kuemmeth F; Lieber CM; Marcus CM
    Nat Nanotechnol; 2011 Dec; 7(1):47-50. PubMed ID: 22179569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nuclear spins on the quantum relaxation of the magnetization for the molecular nanomagnet Fe8.
    Wernsdorfer W; Caneschi A; Sessoli R; Gatteschi D; Cornia A; Villar V; Paulsen C
    Phys Rev Lett; 2000 Mar; 84(13):2965-8. PubMed ID: 11018987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.