These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23215137)

  • 1. Spontaneous circulation of confined active suspensions.
    Woodhouse FG; Goldstein RE
    Phys Rev Lett; 2012 Oct; 109(16):168105. PubMed ID: 23215137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of active-particle suspensions.
    Hatwalne Y; Ramaswamy S; Rao M; Simha RA
    Phys Rev Lett; 2004 Mar; 92(11):118101. PubMed ID: 15089176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.
    Woodhouse FG; Goldstein RE
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14132-7. PubMed ID: 23940314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitable patterns in active nematics.
    Giomi L; Mahadevan L; Chakraborty B; Hagan MF
    Phys Rev Lett; 2011 May; 106(21):218101. PubMed ID: 21699344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional microrheology of freely suspended liquid crystal films.
    Eremin A; Baumgarten S; Harth K; Stannarius R; Nguyen ZH; Goldfain A; Park CS; Maclennan JE; Glaser MA; Clark NA
    Phys Rev Lett; 2011 Dec; 107(26):268301. PubMed ID: 22243186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
    Forest MG; Wang Q; Zhou R
    Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Inference of Forces Causing Cytoplasmic Streaming in Caenorhabditis elegans Embryos and Mouse Oocytes.
    Niwayama R; Nagao H; Kitajima TS; Hufnagel L; Shinohara K; Higuchi T; Ishikawa T; Kimura A
    PLoS One; 2016; 11(7):e0159917. PubMed ID: 27472658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organizing microfluidic crystals.
    Uspal WE; Doyle PS
    Soft Matter; 2014 Jul; 10(28):5177-91. PubMed ID: 24913768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamics and rheology of active liquid crystals: a numerical investigation.
    Marenduzzo D; Orlandini E; Yeomans JM
    Phys Rev Lett; 2007 Mar; 98(11):118102. PubMed ID: 17501095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Suspensions have Nonmonotonic Flow Curves and Multiple Mechanical Equilibria.
    Loisy A; Eggers J; Liverpool TB
    Phys Rev Lett; 2018 Jul; 121(1):018001. PubMed ID: 30028150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confined active nematic flow in cylindrical capillaries.
    Ravnik M; Yeomans JM
    Phys Rev Lett; 2013 Jan; 110(2):026001. PubMed ID: 23383919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics of confined active fluids.
    Brotto T; Caussin JB; Lauga E; Bartolo D
    Phys Rev Lett; 2013 Jan; 110(3):038101. PubMed ID: 23373953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model chromatin flows: numerical analysis of linear and nonlinear hydrodynamics inside a sphere.
    Eshghi I; Zidovska A; Grosberg AY
    Eur Phys J E Soft Matter; 2023 Aug; 46(8):69. PubMed ID: 37540478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity correlations in an active nematic.
    Thampi SP; Golestanian R; Yeomans JM
    Phys Rev Lett; 2013 Sep; 111(11):118101. PubMed ID: 24074119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral stresses in nematic cell monolayers.
    Hoffmann LA; Schakenraad K; Merks RMH; Giomi L
    Soft Matter; 2020 Jan; 16(3):764-774. PubMed ID: 31830190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active micromachines: Microfluidics powered by mesoscale turbulence.
    Thampi SP; Doostmohammadi A; Shendruk TN; Golestanian R; Yeomans JM
    Sci Adv; 2016 Jul; 2(7):e1501854. PubMed ID: 27419229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics of cytoplasmic streaming and its implications for intracellular transport.
    Goldstein RE; Tuval I; van de Meent JW
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3663-7. PubMed ID: 18310326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Tissues as Active Nematic Liquid Crystals.
    Saw TB; Xi W; Ladoux B; Lim CT
    Adv Mater; 2018 Nov; 30(47):e1802579. PubMed ID: 30156334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic suppression of phase separation in active suspensions.
    Matas-Navarro R; Golestanian R; Liverpool TB; Fielding SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032304. PubMed ID: 25314443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the active viscosity and self-propelling speed in channel flows of active polar liquid crystals.
    Yang X; Wang Q
    Soft Matter; 2016 Jan; 12(4):1262-78. PubMed ID: 26583506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.