These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 23215163)

  • 1. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of frictional forces on graphene and graphite.
    Lee H; Lee N; Seo Y; Eom J; Lee S
    Nanotechnology; 2009 Aug; 20(32):325701. PubMed ID: 19620757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. van der Waals screening by single-layer graphene and molybdenum disulfide.
    Tsoi S; Dev P; Friedman AL; Stine R; Robinson JT; Reinecke TL; Sheehan PE
    ACS Nano; 2014 Dec; 8(12):12410-7. PubMed ID: 25412420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulation of the load dependence of nanoscale friction on suspended and supported graphene.
    Ye Z; Martini A
    Langmuir; 2014 Dec; 30(49):14707-11. PubMed ID: 25419859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale interfacial interactions of graphene with polar and nonpolar liquids.
    Robinson BJ; Kay ND; Kolosov OV
    Langmuir; 2013 Jun; 29(25):7735-42. PubMed ID: 23713755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stick slip contact mechanics between dissimilar materials: effect of charging and large friction.
    McGuiggan PM
    Langmuir; 2008 Apr; 24(8):3970-6. PubMed ID: 18341366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frictional characteristics of atomically thin sheets.
    Lee C; Li Q; Kalb W; Liu XZ; Berger H; Carpick RW; Hone J
    Science; 2010 Apr; 328(5974):76-80. PubMed ID: 20360104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale frictional behavior of graphene on SiO₂ and Ni(111) substrates.
    Paolicelli G; Tripathi M; Corradini V; Candini A; Valeri S
    Nanotechnology; 2015 Feb; 26(5):055703. PubMed ID: 25581391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene.
    Spear JC; Custer JP; Batteas JD
    Nanoscale; 2015 Jun; 7(22):10021-9. PubMed ID: 25899217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime.
    Lahiri D; Das S; Choi W; Agarwal A
    ACS Nano; 2012 May; 6(5):3992-4000. PubMed ID: 22519730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring graphene adhesion using atomic force microscopy with a microsphere tip.
    Jiang T; Zhu Y
    Nanoscale; 2015 Jun; 7(24):10760-6. PubMed ID: 26035717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene.
    Zeng X; Peng Y; Yu M; Lang H; Cao X; Zou K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8214-8224. PubMed ID: 29443495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.
    Kwon S; Lee KE; Lee H; Koh SJ; Ko JH; Kim YH; Kim SO; Park JY
    J Phys Chem B; 2018 Jan; 122(2):543-547. PubMed ID: 28926260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity-dependent friction enhances tribomechanical differences between monolayer and multilayer graphene.
    Ptak F; Almeida CM; Prioli R
    Sci Rep; 2019 Oct; 9(1):14555. PubMed ID: 31601937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On scale dependence in friction: transition from intimate to monolayer-lubricated contact.
    Xu D; Ravi-Chandar K; Liechti KM
    J Colloid Interface Sci; 2008 Feb; 318(2):507-19. PubMed ID: 18001763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of few-asperity contacts in adhesion.
    Thoreson EJ; Martin J; Burnham NA
    J Colloid Interface Sci; 2006 Jun; 298(1):94-101. PubMed ID: 16376923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description.
    Jaiswal RP; Kumar G; Kilroy CM; Beaudoin SP
    Langmuir; 2009 Sep; 25(18):10612-23. PubMed ID: 19735133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotribology of self-assembled monolayer with a probe tip investigated using molecular dynamics simulations.
    Wu CD; Fang TH; Lin JF
    Micron; 2013 Jan; 44():410-8. PubMed ID: 23040982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.