These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23215300)

  • 1. Chemical origins of frictional aging.
    Liu Y; Szlufarska I
    Phys Rev Lett; 2012 Nov; 109(18):186102. PubMed ID: 23215300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging.
    Tian K; Goldsby DL; Carpick RW
    Phys Rev Lett; 2018 May; 120(18):186101. PubMed ID: 29775377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frictional ageing from interfacial bonding and the origins of rate and state friction.
    Li Q; Tullis TE; Goldsby D; Carpick RW
    Nature; 2011 Nov; 480(7376):233-6. PubMed ID: 22139421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.
    Tian K; Gosvami NN; Goldsby DL; Liu Y; Szlufarska I; Carpick RW
    Phys Rev Lett; 2017 Feb; 118(7):076103. PubMed ID: 28256893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging of the frictional properties induced by temperature variations.
    Géminard JC; Bertin E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056108. PubMed ID: 21230546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical aging of large-scale randomly rough frictional contacts.
    Li Z; Pastewka L; Szlufarska I
    Phys Rev E; 2018 Aug; 98(2-1):023001. PubMed ID: 30253579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory Distance for Interfacial Chemical Bond-Induced Friction at the Nanoscale.
    Tian K; Li Z; Gosvami NN; Goldsby DL; Szlufarska I; Carpick RW
    ACS Nano; 2019 Jul; 13(7):7425-7434. PubMed ID: 31180629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Molecular to Multiasperity Contacts: How Roughness Bridges the Friction Scale Gap.
    Frérot L; Crespo A; El-Awady JA; Robbins MO; Cayer-Barrioz J; Mazuyer D
    ACS Nano; 2023 Feb; 17(3):2205-2211. PubMed ID: 36690336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip.
    Lorenz B; Persson BN
    J Phys Condens Matter; 2012 Jun; 24(22):225008. PubMed ID: 22580928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear Controls Frictional Aging by Erasing Memory.
    Dillavou S; Rubinstein SM
    Phys Rev Lett; 2020 Feb; 124(8):085502. PubMed ID: 32167345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles of atomic friction: from sticking atoms to superlubric sliding.
    Hölscher H; Schirmeisen A; Schwarz UD
    Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1869):1383-404. PubMed ID: 18156127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework.
    Thøgersen K; Trømborg JK; Sveinsson HA; Malthe-Sørenssen A; Scheibert J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052401. PubMed ID: 25353806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General theory of frictional heating with application to rubber friction.
    Fortunato G; Ciaravola V; Furno A; Lorenz B; Persson BN
    J Phys Condens Matter; 2015 May; 27(17):175008. PubMed ID: 25873527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is the origin of macroscopic friction?
    Sakuma H; Kawai K; Katayama I; Suehara S
    Sci Adv; 2018 Dec; 4(12):eaav2268. PubMed ID: 30588496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular origins of friction: the force on adsorbed layers.
    Cieplak M; Smith ED; Robbins MO
    Science; 1994 Aug; 265(5176):1209-12. PubMed ID: 17787586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of enhanced nanoscale creep flow of crystalline metals enabled by controlling surface wettability.
    Xiang JX; Liu Z
    Nat Commun; 2022 Dec; 13(1):7943. PubMed ID: 36572681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of real contact area under shear and the value of static friction of soft materials.
    Sahli R; Pallares G; Ducottet C; Ben Ali IE; Al Akhrass S; Guibert M; Scheibert J
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):471-476. PubMed ID: 29295925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces.
    Hansson PM; Claesson PM; Swerin A; Briscoe WH; Schoelkopf J; Gane PA; Thormann E
    Phys Chem Chem Phys; 2013 Nov; 15(41):17893-902. PubMed ID: 24056733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear Aging Behavior at Short Timescales in Nanoscale Contacts.
    Tian K; Li Z; Liu Y; Gosvami NN; Goldsby DL; Szlufarska I; Carpick RW
    Phys Rev Lett; 2020 Jan; 124(2):026801. PubMed ID: 32004017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing and tuning frictional aging at the nanoscale.
    Capozza R; Barel I; Urbakh M
    Sci Rep; 2013; 3():1896. PubMed ID: 23719489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.