These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23215326)

  • 1. Drift-diffusion model of the fragmentation of the external ring structure in the photoluminescence pattern emitted by indirect excitons in coupled quantum wells.
    Wilkes J; Muljarov EA; Ivanov AL
    Phys Rev Lett; 2012 Nov; 109(18):187402. PubMed ID: 23215326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-trapping of indirect excitons by a current filament.
    Mouchliadis L; Ivanov AL
    J Phys Condens Matter; 2007 Jul; 19(29):295215. PubMed ID: 21483067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons.
    Butov LV; Ivanov AL; Imamoglu A; Littlewood PB; Shashkin AA; Dolgopolov VT; Campman KL; Gossard AC
    Phys Rev Lett; 2001 Jun; 86(24):5608-11. PubMed ID: 11415313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation mechanism and low-temperature instability of exciton rings.
    Butov LV; Levitov LS; Mintsev AV; Simons BD; Gossard AC; Chemla DS
    Phys Rev Lett; 2004 Mar; 92(11):117404. PubMed ID: 15089167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoluminescence ring formation in coupled quantum wells: excitonic versus ambipolar diffusion.
    Stern M; Garmider V; Segre E; Rappaport M; Umansky V; Levinson Y; Bar-Joseph I
    Phys Rev Lett; 2008 Dec; 101(25):257402. PubMed ID: 19113751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bose-Einstein condensation and indirect excitons: a review.
    Combescot M; Combescot R; Dubin F
    Rep Prog Phys; 2017 Jun; 80(6):066501. PubMed ID: 28355164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between periodicity and nonlinearity of indirect excitons in coupled quantum wells.
    Xu TF; Jing XL; Luo HG; Wu WC; Liu CS
    J Phys Condens Matter; 2012 Nov; 24(45):455301. PubMed ID: 23072970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherence length of cold exciton gases in coupled quantum wells.
    Yang S; Hammack AT; Fogler MM; Butov LV; Gossard AC
    Phys Rev Lett; 2006 Nov; 97(18):187402. PubMed ID: 17155574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopically ordered state in an exciton system.
    Butov LV; Gossard AC; Chemla DS
    Nature; 2002 Aug; 418(6899):751-4. PubMed ID: 12181559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure.
    Ceballos F; Bellus MZ; Chiu HY; Zhao H
    ACS Nano; 2014 Dec; 8(12):12717-24. PubMed ID: 25402669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton liquid in coupled quantum wells.
    Stern M; Umansky V; Bar-Joseph I
    Science; 2014 Jan; 343(6166):55-7. PubMed ID: 24385625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range transport in excitonic dark states in coupled quantum wells.
    Snoke D; Denev S; Liu Y; Pfeiffer L; West K
    Nature; 2002 Aug; 418(6899):754-7. PubMed ID: 12181560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized and bound excitons in type-II ZnMnSe/ZnSSe quantum wells.
    Chernenko AV; Brichkin AS
    J Phys Condens Matter; 2014 Oct; 26(42):425301. PubMed ID: 25273841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature superfluidity with indirect excitons in van der Waals heterostructures.
    Fogler MM; Butov LV; Novoselov KS
    Nat Commun; 2014 Jul; 5():4555. PubMed ID: 25065343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantized Vortices and Four-Component Superfluidity of Semiconductor Excitons.
    Anankine R; Beian M; Dang S; Alloing M; Cambril E; Merghem K; Carbonell CG; Lemaître A; Dubin F
    Phys Rev Lett; 2017 Mar; 118(12):127402. PubMed ID: 28388190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Measurements and Theoretical Modelling of Excitons in Double ZnO/ZnMgO Quantum Wells in an Internal Electric Field.
    Andrzejewski J; Pietrzyk MA; Jarosz D; Kozanecki A
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mott transition of excitons in coupled quantum wells.
    Stern M; Garmider V; Umansky V; Bar-Joseph I
    Phys Rev Lett; 2008 Jun; 100(25):256402. PubMed ID: 18643682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.