These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23215382)

  • 1. Temperature gradient driven lasing and stimulated cooling.
    Sandner K; Ritsch H
    Phys Rev Lett; 2012 Nov; 109(19):193601. PubMed ID: 23215382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum optical thermodynamic machines: lasing as relaxation.
    Youssef M; Mahler G; Obada AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061129. PubMed ID: 20365140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time, space, and spectral multiplexing for radiation balanced operation of semiconductor lasers.
    Vafapour Z; Khurgin JB
    Opt Express; 2018 Sep; 26(18):24124-24134. PubMed ID: 30184904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain recovery dynamics and photon-driven transport in quantum cascade lasers.
    Choi H; Diehl L; Wu ZK; Giovannini M; Faist J; Capasso F; Norris TB
    Phys Rev Lett; 2008 Apr; 100(16):167401. PubMed ID: 18518245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband THz lasing from a photon-phonon quantum cascade structure.
    Scalari G; Amanti MI; Walther C; Terazzi R; Beck M; Faist J
    Opt Express; 2010 Apr; 18(8):8043-52. PubMed ID: 20588648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic pumping of heat: approaching the Carnot efficiency.
    Segal D
    Phys Rev Lett; 2008 Dec; 101(26):260601. PubMed ID: 19113763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HgCdTe-based quantum cascade lasers operating in the GaAs phonon Reststrahlen band predicted by the balance equation method.
    Ushakov D; Afonenko A; Khabibullin R; Ponomarev D; Aleshkin V; Morozov S; Dubinov A
    Opt Express; 2020 Aug; 28(17):25371-25382. PubMed ID: 32907059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers.
    Song JK; Szarko JM; Leone SR; Li S; Zhao Y
    J Phys Chem B; 2005 Aug; 109(33):15749-53. PubMed ID: 16852998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsecond-sustained lasing from colloidal quantum dot solids.
    Adachi MM; Fan F; Sellan DP; Hoogland S; Voznyy O; Houtepen AJ; Parrish KD; Kanjanaboos P; Malen JA; Sargent EH
    Nat Commun; 2015 Oct; 6():8694. PubMed ID: 26493282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random lasing in blue phase liquid crystals.
    Chen CW; Jau HC; Wang CT; Lee CH; Khoo IC; Lin TH
    Opt Express; 2012 Oct; 20(21):23978-84. PubMed ID: 23188364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Time-resolved photoluminescence of stimulated emission from ZnO nanoparticles].
    Wang XF; Xie PB; Zhao FL; Wang HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1459-62. PubMed ID: 19810508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-resolved measurements of stimulated emission in a laser.
    Kröll J; Darmo J; Dhillon SS; Marcadet X; Calligaro M; Sirtori C; Unterrainer K
    Nature; 2007 Oct; 449(7163):698-701. PubMed ID: 17928855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature solution-processed wavelength-tunable perovskites for lasing.
    Xing G; Mathews N; Lim SS; Yantara N; Liu X; Sabba D; Grätzel M; Mhaisalkar S; Sum TC
    Nat Mater; 2014 May; 13(5):476-80. PubMed ID: 24633346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves.
    Han H; Li B; Volz S; Kosevich YA
    Phys Rev Lett; 2015 Apr; 114(14):145501. PubMed ID: 25910135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon Cooling by an Optomechanical Heat Pump.
    Dong Y; Bariani F; Meystre P
    Phys Rev Lett; 2015 Nov; 115(22):223602. PubMed ID: 26650304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities.
    Jagsch ST; Triviño NV; Lohof F; Callsen G; Kalinowski S; Rousseau IM; Barzel R; Carlin JF; Jahnke F; Butté R; Gies C; Hoffmann A; Grandjean N; Reitzenstein S
    Nat Commun; 2018 Feb; 9(1):564. PubMed ID: 29422492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A GaN photonic crystal membrane laser.
    Lin CH; Wang JY; Chen CY; Shen KC; Yeh DM; Kiang YW; Yang CC
    Nanotechnology; 2011 Jan; 22(2):025201. PubMed ID: 21135479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers.
    Gu G; Kong F; Hawkins T; Parsons J; Jones M; Dunn C; Kalichevsky-Dong MT; Saitoh K; Dong L
    Opt Express; 2014 Jun; 22(11):13962-8. PubMed ID: 24921587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.