These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 23215448)

  • 1. Base-catalyzed decarboxylation of mandelylthiamin: direct formation of bicarbonate as an alternative to formation of CO2.
    Howe GW; Bielecki M; Kluger R
    J Am Chem Soc; 2012 Dec; 134(51):20621-3. PubMed ID: 23215448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decarboxylation, CO2 and the reversion problem.
    Kluger R
    Acc Chem Res; 2015 Nov; 48(11):2843-9. PubMed ID: 26528892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decarboxylation without CO2: why bicarbonate forms directly as trichloroacetate is converted to chloroform.
    Howe GW; Kluger R
    J Org Chem; 2014 Nov; 79(22):10972-80. PubMed ID: 25340631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton Transfer via π-Interactions from Pyridine Provides a Facilitated Route for Transfer of CO
    Zambri MA; Kluger R
    J Am Chem Soc; 2024 Jan; 146(2):1403-1409. PubMed ID: 38176895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes.
    Kluger R; Ikeda G; Hu Q; Cao P; Drewry J
    J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions.
    Li MD; Yeung CS; Guan X; Ma J; Li W; Ma C; Phillips DL
    Chemistry; 2011 Sep; 17(39):10935-50. PubMed ID: 21850720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making thiamin work faster: acid-promoted separation of carbon dioxide.
    Hu Q; Kluger R
    J Am Chem Soc; 2005 Sep; 127(35):12242-3. PubMed ID: 16131200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope effect, mechanism, and origin of catalysis in the decarboxylation of mandelylthiamin.
    Gonzalez-James OM; Singleton DA
    J Am Chem Soc; 2010 May; 132(20):6896-7. PubMed ID: 20433168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolytic decarboxylation of carboxylic acids and the formation of protonated carbonic acid.
    Mundle SO; Lacrampe-Couloume G; Lollar BS; Kluger R
    J Am Chem Soc; 2010 Feb; 132(7):2430-6. PubMed ID: 20121187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal return of carbon dioxide in decarboxylation: catalysis of separation and 12C/13C kinetic isotope effects.
    Mundle SO; Rathgeber S; Lacrampe-Couloume G; Sherwood Lollar B; Kluger R
    J Am Chem Soc; 2009 Aug; 131(33):11638-9. PubMed ID: 19642680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decarboxylation via addition of water to a carboxyl group: acid catalysis of pyrrole-2-carboxylic acid.
    Mundle SO; Kluger R
    J Am Chem Soc; 2009 Aug; 131(33):11674-5. PubMed ID: 19645466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of regiospecific carbanions under electrospray ionisation conditions and their selectivity in ion-molecule reactions with CO2.
    Kumar MK; Sateesh B; Prabhakar S; Sastry GN; Vairamani M
    Rapid Commun Mass Spectrom; 2006; 20(6):987-93. PubMed ID: 16479549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid.
    Sullivan SM; Holyoak T
    Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Kinetic Isotope Effects and the Mechanisms of Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid and CO
    Vandersteen AA; Howe GW; Sherwood Lollar B; Kluger R
    J Am Chem Soc; 2017 Oct; 139(42):15049-15053. PubMed ID: 28982238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio transition state searching in complex systems: fatty acid decarboxylation in minerals.
    Geatches DL; Greenwell HC; Clark SJ
    J Phys Chem A; 2011 Mar; 115(12):2658-67. PubMed ID: 21375311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge development in the transition state for decarboxylations in water: spontaneous and acetone-catalyzed decarboxylation of aminomalonate.
    Callahan BP; Wolfenden R
    J Am Chem Soc; 2004 Apr; 126(14):4514-5. PubMed ID: 15070358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic mechanism and structural requirements of the amine-catalyzed decarboxylation of oxaloacetic acid.
    Thalji NK; Crowe WE; Waldrop GL
    J Org Chem; 2009 Jan; 74(1):144-52. PubMed ID: 19035664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation.
    Wu L; Zhang ZY
    Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.
    Schmidt RK; Müther K; Mück-Lichtenfeld C; Grimme S; Oestreich M
    J Am Chem Soc; 2012 Mar; 134(9):4421-8. PubMed ID: 22309027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins.
    Zhang SL; Fu Y; Shang R; Guo QX; Liu L
    J Am Chem Soc; 2010 Jan; 132(2):638-46. PubMed ID: 20038103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.