BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 23215453)

  • 1. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA.
    Mohanty J; Barooah N; Dhamodharan V; Harikrishna S; Pradeepkumar PI; Bhasikuttan AC
    J Am Chem Soc; 2013 Jan; 135(1):367-76. PubMed ID: 23215453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex.
    Gabelica V; Maeda R; Fujimoto T; Yaku H; Murashima T; Sugimoto N; Miyoshi D
    Biochemistry; 2013 Aug; 52(33):5620-8. PubMed ID: 23909872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly sensitive label-free sensor for Mercury ion (Hg²⁺) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer.
    Ge J; Li XP; Jiang JH; Yu RQ
    Talanta; 2014 May; 122():85-90. PubMed ID: 24720966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable label-free fluorescent sensing of biothiols based on ThT direct inducing conformation-specific G-quadruplex.
    Tong LL; Li L; Chen Z; Wang Q; Tang B
    Biosens Bioelectron; 2013 Nov; 49():420-5. PubMed ID: 23807235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular rotor-based fluorescent probe for selective recognition of hybrid G-quadruplex and as a K+ sensor.
    Liu L; Shao Y; Peng J; Huang C; Liu H; Zhang L
    Anal Chem; 2014 Feb; 86(3):1622-31. PubMed ID: 24405563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes.
    Xu S; Li Q; Xiang J; Yang Q; Sun H; Guan A; Wang L; Liu Y; Yu L; Shi Y; Chen H; Tang Y
    Sci Rep; 2016 Apr; 6():24793. PubMed ID: 27098781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New Föster Resonance Energy Transfer System.
    Liu X; Hua X; Fan Q; Chao J; Su S; Huang YQ; Wang L; Huang W
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16458-65. PubMed ID: 26173915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of [Ru(bpy)2(dppz)]2+ with human telomeric DNA: preferential binding to G-quadruplexes over i-motif.
    Shi S; Geng X; Zhao J; Yao T; Wang C; Yang D; Zheng L; Ji L
    Biochimie; 2010 Apr; 92(4):370-7. PubMed ID: 20096325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioflavin T binds dimeric parallel-stranded GA-containing non-G-quadruplex DNAs: a general approach to lighting up double-stranded scaffolds.
    Liu S; Peng P; Wang H; Shi L; Li T
    Nucleic Acids Res; 2017 Dec; 45(21):12080-12089. PubMed ID: 29059300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioflavin T as a fluorescence light-up probe for both parallel and antiparallel G-quadruplexes of 29-mer thrombin binding aptamer.
    Li Y; Xu S; Wu X; Xu Q; Zhao Y; Lou X; Yang X
    Anal Bioanal Chem; 2016 Nov; 408(28):8025-8036. PubMed ID: 27590320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics.
    Hong Y; Häussler M; Lam JW; Li Z; Sin KK; Dong Y; Tong H; Liu J; Qin A; Renneberg R; Tang BZ
    Chemistry; 2008; 14(21):6428-37. PubMed ID: 18512826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion.
    Kong DM; Ma YE; Guo JH; Yang W; Shen HX
    Anal Chem; 2009 Apr; 81(7):2678-84. PubMed ID: 19271760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-atomic simulations on human telomeric G-quadruplex DNA binding with thioflavin T.
    Luo D; Mu Y
    J Phys Chem B; 2015 Apr; 119(15):4955-67. PubMed ID: 25806428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-quadruplexes from human telomeric DNA: how many conformations in PEG containing solutions?
    Petraccone L; Malafronte A; Amato J; Giancola C
    J Phys Chem B; 2012 Feb; 116(7):2294-305. PubMed ID: 22268560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding pathways of human telomeric hybrid G-quadruplex structure.
    Mashimo T; Sugiyama H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):239-40. PubMed ID: 18029675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.
    Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ
    J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct visualization of nucleolar G-quadruplexes in live cells by using a fluorescent light-up probe.
    Zhang S; Sun H; Chen H; Li Q; Guan A; Wang L; Shi Y; Xu S; Liu M; Tang Y
    Biochim Biophys Acta Gen Subj; 2018 May; 1862(5):1101-1106. PubMed ID: 29410183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding pathways of hybrid-1 and hybrid-2 G-quadruplex structures.
    Mashimo T; Sannohe Y; Yagi H; Sugiyama H
    Nucleic Acids Symp Ser (Oxf); 2008; (52):409-10. PubMed ID: 18776427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G-quadruplex formation in human telomeric (TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition.
    Kan ZY; Lin Y; Wang F; Zhuang XY; Zhao Y; Pang DW; Hao YH; Tan Z
    Nucleic Acids Res; 2007; 35(11):3646-53. PubMed ID: 17488850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possibility of an antiparallel (tetramer) quadruplex exhibited by the double repeat of the human telomere.
    Kaushik M; Bansal A; Saxena S; Kukreti S
    Biochemistry; 2007 Jun; 46(24):7119-31. PubMed ID: 17523598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.