These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23215632)
1. Design and benchmark testing of a bicorporal pump for the treatment of normal-pressure hydrocephalus and idiopathic intracranial hypertension. Mattei TA; Nair K; Morris M; Cole D; Flatt M; Goulart CR; Kroeter B; Warren S; Lin JJ J Neurosurg Pediatr; 2013 Feb; 11(2):188-97. PubMed ID: 23215632 [TBL] [Abstract][Full Text] [Related]
2. Addressing the siphoning effect in new shunt designs by decoupling the activation pressure and the pressure gradient across the valve. Mattei TA; Morris M; Nowak K; Smith D; Yee J; Goulart CR; Zborowski A; Lin JJ J Neurosurg Pediatr; 2013 Feb; 11(2):181-7. PubMed ID: 23215676 [TBL] [Abstract][Full Text] [Related]
3. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture? Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395 [TBL] [Abstract][Full Text] [Related]
4. CSF outflow resistance as predictor of shunt function. A long-term study. Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771 [TBL] [Abstract][Full Text] [Related]
5. Overdrainage shunt complications in idiopathic normal-pressure hydrocephalus and lumbar puncture opening pressure. Khan QU; Wharen RE; Grewal SS; Thomas CS; Deen HG; Reimer R; Van Gerpen JA; Crook JE; Graff-Radford NR J Neurosurg; 2013 Dec; 119(6):1498-502. PubMed ID: 23930853 [TBL] [Abstract][Full Text] [Related]
6. Performance of fixed-pressure valve with antisiphon device SPHERA(®) in hydrocephalus treatment and overdrainage prevention. Pinto FC; Pereira RM; Saad F; Teixeira MJ Arq Neuropsiquiatr; 2012 Sep; 70(9):704-9. PubMed ID: 22990728 [TBL] [Abstract][Full Text] [Related]
7. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme. Czosnyka Z; Czosnyka M; Richards HK; Pickard JD Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485 [TBL] [Abstract][Full Text] [Related]
8. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure. Aihara Y; Shoji I; Okada Y J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212 [TBL] [Abstract][Full Text] [Related]
10. Importance of anti-siphon devices in the treatment of pediatric hydrocephalus. Tokoro K; Chiba Y; Abe H; Tanaka N; Yamataki A; Kanno H Childs Nerv Syst; 1994 May; 10(4):236-8. PubMed ID: 7923233 [TBL] [Abstract][Full Text] [Related]
11. The predictive value of external continuous lumbar drainage, with cerebrospinal fluid outflow controlled by medium pressure valve, in normal pressure hydrocephalus. Panagiotopoulos V; Konstantinou D; Kalogeropoulos A; Maraziotis T Acta Neurochir (Wien); 2005 Sep; 147(9):953-8; discussion 958. PubMed ID: 16041469 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study. Pennell T; Yi JL; Kaufman BA; Krishnamurthy S J Neurosurg Pediatr; 2016 Mar; 17(3):270-7. PubMed ID: 26565943 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the Effects of Cerebrospinal Fluid Protein Content on the Performance of Differential Pressure Valves and Antisiphon Devices Using a Novel Benchtop Shunting Model. Gorelick NL; Serra R; Iyer R; Um R; Grewal A; Monroe A; Antoine H; Beharry K; Cecia A; Kroll F; Ishida W; Perdomo-Pantoja A; Xu R; Loth F; Ye X; Suk I; Tyler B; Bayston R; Luciano MG Neurosurgery; 2020 Oct; 87(5):1046-1054. PubMed ID: 32521017 [TBL] [Abstract][Full Text] [Related]
14. Lumbar subcutaneous shunt: a novel technique for therapeutic decision making in normal pressure hydrocephalus (NPH) and benign intracranial hypertension (BIH). Ushewokunze S; Haja Mydin HN; Prasad R; Mendelow AD Br J Neurosurg; 2008 Oct; 22(5):678-81. PubMed ID: 19016120 [TBL] [Abstract][Full Text] [Related]
15. [Elastic properties of the cerebrospinal system and cerebrospinal fluid dynamics in intracranial hypertension and normotensive hydrocephalus in adults]. Razumovskiĭ AE; Shakhnovich AR; Simernitskiĭ BP; Rakier AIa; Gasparian SS Zh Vopr Neirokhir Im N N Burdenko; 1986; (6):53-8. PubMed ID: 3811747 [TBL] [Abstract][Full Text] [Related]
16. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing. Venkataraman P; Browd SR; Lutz BR J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135 [TBL] [Abstract][Full Text] [Related]
17. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation. Johansson SB; Eklund A; Malm J; Stemme G; Roxhed N Biomed Microdevices; 2014 Aug; 16(4):529-36. PubMed ID: 24609991 [TBL] [Abstract][Full Text] [Related]
18. Shunt assistant valve: bench test investigations and clinical performance. Tokoro K; Suzuki S; Chiba Y; Tsuda M Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174 [TBL] [Abstract][Full Text] [Related]
19. Changes in intracranial pulse pressure amplitudes after shunt implantation and adjustment of shunt valve opening pressure in normal pressure hydrocephalus. Eide PK; Sorteberg W Acta Neurochir (Wien); 2008 Nov; 150(11):1141-7; discussion 1147. PubMed ID: 18936877 [TBL] [Abstract][Full Text] [Related]
20. Test-Retest Reliability of Outpatient Telemetric Intracranial Pressure Measurements in Shunt-Dependent Patients with Hydrocephalus and Idiopathic Intracranial Hypertension. Müller SJ; Freimann FB; von der Brelie C; Rohde V; Schatlo B World Neurosurg; 2019 Nov; 131():e74-e80. PubMed ID: 31295619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]