These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23215676)

  • 1. Addressing the siphoning effect in new shunt designs by decoupling the activation pressure and the pressure gradient across the valve.
    Mattei TA; Morris M; Nowak K; Smith D; Yee J; Goulart CR; Zborowski A; Lin JJ
    J Neurosurg Pediatr; 2013 Feb; 11(2):181-7. PubMed ID: 23215676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustable antisiphon shunt.
    Sood S; Canady AI; Ham SD
    Childs Nerv Syst; 1999 May; 15(5):246-9. PubMed ID: 10392496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer modeling of siphoning for CSF shunt design evaluation.
    Drake JM; Tenti G; Sivalsganathan S
    Pediatr Neurosurg; 1994; 21(1):6-15. PubMed ID: 7947313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and benchmark testing of a bicorporal pump for the treatment of normal-pressure hydrocephalus and idiopathic intracranial hypertension.
    Mattei TA; Nair K; Morris M; Cole D; Flatt M; Goulart CR; Kroeter B; Warren S; Lin JJ
    J Neurosurg Pediatr; 2013 Feb; 11(2):188-97. PubMed ID: 23215632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group.
    Drake JM; Kestle J
    Childs Nerv Syst; 1996 Aug; 12(8):434-47. PubMed ID: 8891361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of refractory low-pressure hydrocephalus with an active pumping negative-pressure shunt system.
    Kalani MY; Turner JD; Nakaji P
    J Clin Neurosci; 2013 Mar; 20(3):462-6. PubMed ID: 23380444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of existing and future electromechanical shunt valves in combination with a model for brain fluid dynamics.
    Elixmann IM; Walter M; Kiefer M; Leonhardt S
    Acta Neurochir Suppl; 2012; 113():77-81. PubMed ID: 22116428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shunt assistant valve: bench test investigations and clinical performance.
    Tokoro K; Suzuki S; Chiba Y; Tsuda M
    Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of shunt technology especially for idiopathic normal pressure hydrocephalus].
    Hashimoto MA
    Brain Nerve; 2008 Mar; 60(3):247-55. PubMed ID: 18402072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study.
    Gruber RW; Roehrig B
    J Neurosurg Pediatr; 2010 Jan; 5(1):4-16. PubMed ID: 20043731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus.
    Drake JM; Kestle JR; Milner R; Cinalli G; Boop F; Piatt J; Haines S; Schiff SJ; Cochrane DD; Steinbok P; MacNeil N
    Neurosurgery; 1998 Aug; 43(2):294-303; discussion 303-5. PubMed ID: 9696082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study.
    Lundkvist B; Eklund A; Kristensen B; Fagerlund M; Koskinen LO; Malm J
    J Neurosurg; 2001 May; 94(5):750-6. PubMed ID: 11354406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Delta Valve: a physiologic shunt system.
    Watson DA
    Childs Nerv Syst; 1994 May; 10(4):224-30. PubMed ID: 7923231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shunt survival rates by using the adjustable differential pressure valve combined with a gravitational unit (proGAV) in pediatric neurosurgery.
    Thomale UW; Gebert AF; Haberl H; Schulz M
    Childs Nerv Syst; 2013 Mar; 29(3):425-31. PubMed ID: 23135777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory.
    Czosnyka M; Czosnyka Z; Whitehouse H; Pickard JD
    J Neurol Neurosurg Psychiatry; 1997 Jan; 62(1):43-50. PubMed ID: 9010399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.