These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23215970)

  • 1. Gliogenesis in the mushroom body of the carpenter ant, Camponotus japonicus.
    Nasu N; Hara K
    Zoolog Sci; 2012 Dec; 29(12):800-6. PubMed ID: 23215970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecdysone receptor expression in developing and adult mushroom bodies of the ant Camponotus japonicus.
    Nemoto M; Hara K
    Dev Genes Evol; 2007 Sep; 217(9):619-27. PubMed ID: 17703321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postembryonic development of the mushroom bodies in the ant, Camponotus japonicus.
    Ishii Y; Kubota K; Hara K
    Zoolog Sci; 2005 Jul; 22(7):743-53. PubMed ID: 16082163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mushroom body volumes and visual interneurons in ants: comparison between sexes and castes.
    Ehmer B; Gronenberg W
    J Comp Neurol; 2004 Feb; 469(2):198-213. PubMed ID: 14694534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Social isolation and brain development in the ant Camponotus floridanus.
    Seid MA; Junge E
    Naturwissenschaften; 2016 Jun; 103(5-6):42. PubMed ID: 27126402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus.
    Hojo MK; Ishii K; Sakura M; Yamaguchi K; Shigenobu S; Ozaki M
    Sci Rep; 2015 Aug; 5():13541. PubMed ID: 26310137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
    Arena P; Patané L; Stornanti V; Termini PS; Zäpf B; Strauss R
    Neural Netw; 2013 May; 41():202-11. PubMed ID: 23246431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis.
    Stieb SM; Muenz TS; Wehner R; Rössler W
    Dev Neurobiol; 2010 May; 70(6):408-23. PubMed ID: 20131320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mushroom body-preferential expression of proteins/genes involved in endoplasmic reticulum Ca(2+)-transport in the worker honeybee (Apis mellifera L.) brain.
    Uno Y; Fujiyuki T; Morioka M; Kubo T
    Insect Mol Biol; 2013 Feb; 22(1):52-61. PubMed ID: 23170949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Division of labor and structural plasticity in an extrinsic serotonergic mushroom body neuron in the ant Pheidole dentata.
    Giraldo YM; Patel E; Gronenberg W; Traniello JF
    Neurosci Lett; 2013 Feb; 534():107-11. PubMed ID: 23274482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly.
    Sinakevitch I; Strausfeld NJ
    J Comp Neurol; 2006 Jan; 494(3):460-75. PubMed ID: 16320256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin-immunoreactive neurons in the antennal sensory system of the brain in the carpenter ant, Camponotus japonicus.
    Tsuji E; Aonuma H; Yokohari F; Nishikawa M
    Zoolog Sci; 2007 Aug; 24(8):836-49. PubMed ID: 18217492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CaMKII is differentially localized in synaptic regions of Kenyon cells within the mushroom bodies of the honeybee brain.
    Pasch E; Muenz TS; Rössler W
    J Comp Neurol; 2011 Dec; 519(18):3700-12. PubMed ID: 21674485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.).
    Suenami S; Paul RK; Takeuchi H; Okude G; Fujiyuki T; Shirai K; Kubo T
    PLoS One; 2016; 11(6):e0157841. PubMed ID: 27351839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher brain centers for social tasks in worker ants, Camponotus japonicus.
    Nishikawa M; Watanabe H; Yokohari F
    J Comp Neurol; 2012 May; 520(7):1584-98. PubMed ID: 22102363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of mushroom body miniature, a zinc-finger protein implicated in brain development of Drosophila.
    Raabe T; Clemens-Richter S; Twardzik T; Ebert A; Gramlich G; Heisenberg M
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14276-81. PubMed ID: 15375215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers.
    Groh C; Kelber C; Grübel K; Rössler W
    Proc Biol Sci; 2014 Jun; 281(1785):20140432. PubMed ID: 24807257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum.
    Ozaki M; Wada-Katsumata A; Fujikawa K; Iwasaki M; Yokohari F; Satoji Y; Nisimura T; Yamaoka R
    Science; 2005 Jul; 309(5732):311-4. PubMed ID: 15947139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments.
    Ardin P; Peng F; Mangan M; Lagogiannis K; Webb B
    PLoS Comput Biol; 2016 Feb; 12(2):e1004683. PubMed ID: 26866692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβ
    Schatton A; Scharff C
    Eur J Neurosci; 2017 Nov; 46(9):2534-2541. PubMed ID: 28921711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.