These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23215980)

  • 1. Evaluation of osteoconductive scaffolds in the canine femoral multi-defect model.
    Luangphakdy V; Walker E; Shinohara K; Pan H; Hefferan T; Bauer TW; Stockdale L; Saini S; Dadsetan M; Runge MB; Vasanji A; Griffith L; Yaszemski M; Muschler GF
    Tissue Eng Part A; 2013 Mar; 19(5-6):634-48. PubMed ID: 23215980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds.
    Kim J; Magno MH; Waters H; Doll BA; McBride S; Alvarez P; Darr A; Vasanji A; Kohn J; Hollinger JO
    Tissue Eng Part A; 2012 Jun; 18(11-12):1132-9. PubMed ID: 22220747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects.
    Henslee AM; Spicer PP; Yoon DM; Nair MB; Meretoja VV; Witherel KE; Jansen JA; Mikos AG; Kasper FK
    Acta Biomater; 2011 Oct; 7(10):3627-37. PubMed ID: 21757034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration.
    Amini AR; Adams DJ; Laurencin CT; Nukavarapu SP
    Tissue Eng Part A; 2012 Jul; 18(13-14):1376-88. PubMed ID: 22401817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: an ovine femoral condyle defect study.
    Tayton E; Purcell M; Smith JO; Lanham S; Howdle SM; Shakesheff KM; Goodship A; Blunn G; Fowler D; Dunlop DG; Oreffo RO
    J Biomed Mater Res A; 2015 Apr; 103(4):1346-56. PubMed ID: 25044983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo.
    Saito E; Liao EE; Hu WW; Krebsbach PH; Hollister SJ
    J Tissue Eng Regen Med; 2013 Feb; 7(2):99-111. PubMed ID: 22162220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Modified Poly(l-lactide-
    Krok-Borkowicz M; Reczyńska K; Rumian Ł; Menaszek E; Orzelski M; Malisz P; Silmanowicz P; Dobrzyński P; Pamuła E
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofabrication of SDF-1 Functionalized 3D-Printed Cell-Free Scaffolds for Bone Tissue Regeneration.
    Lauer A; Wolf P; Mehler D; Götz H; Rüzgar M; Baranowski A; Henrich D; Rommens PM; Ritz U
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mandibular Jaw Bone Regeneration Using Human Dental Cell-Seeded Tyrosine-Derived Polycarbonate Scaffolds.
    Zhang W; Zhang Z; Chen S; Macri L; Kohn J; Yelick PC
    Tissue Eng Part A; 2016 Jul; 22(13-14):985-93. PubMed ID: 27369635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect.
    Lai Y; Li Y; Cao H; Long J; Wang X; Li L; Li C; Jia Q; Teng B; Tang T; Peng J; Eglin D; Alini M; Grijpma DW; Richards G; Qin L
    Biomaterials; 2019 Mar; 197():207-219. PubMed ID: 30660996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model.
    Kim J; McBride S; Donovan A; Darr A; Magno MH; Hollinger JO
    Biomed Mater; 2015 May; 10(3):035001. PubMed ID: 25953950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of blending poly (l-lactic acid) on in vivo performance of 3D-printed poly(l-lactide-co-caprolactone)/PLLA scaffolds.
    Duan R; Wang Y; Su D; Wang Z; Zhang Y; Du B; Liu L; Li X; Zhang Q
    Biomater Adv; 2022 Jul; 138():212948. PubMed ID: 35913240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure.
    He F; Chen Y; Li J; Lin B; Ouyang Y; Yu B; Xia Y; Yu B; Ye J
    J Biomed Mater Res A; 2015 Apr; 103(4):1312-24. PubMed ID: 24890626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.