These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23216531)

  • 1. Systematic review: diet-gene interactions and the risk of colorectal cancer.
    Andersen V; Holst R; Vogel U
    Aliment Pharmacol Ther; 2013 Feb; 37(4):383-91. PubMed ID: 23216531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between meat intake and genetic variation in relation to colorectal cancer.
    Andersen V; Vogel U
    Genes Nutr; 2015 Jan; 10(1):448. PubMed ID: 25491747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-cohort study.
    Andersen V; Holst R; Kopp TI; Tjønneland A; Vogel U
    PLoS One; 2013; 8(10):e78366. PubMed ID: 24194923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between interleukin-10 (IL-10) polymorphisms and dietary fibre in relation to risk of colorectal cancer in a Danish case-cohort study.
    Andersen V; Egeberg R; Tjønneland A; Vogel U
    BMC Cancer; 2012 May; 12():183. PubMed ID: 22594912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Acetyltransferase 2 genetic polymorphisms and risk of colorectal cancer.
    da Silva TD; Felipe AV; de Lima JM; Oshima CT; Forones NM
    World J Gastroenterol; 2011 Feb; 17(6):760-5. PubMed ID: 21390146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer.
    Sørensen M; Autrup H; Olsen A; Tjønneland A; Overvad K; Raaschou-Nielsen O
    Cancer Lett; 2008 Aug; 266(2):186-93. PubMed ID: 18372103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphisms in the xenobiotic transporter Multidrug Resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study.
    Andersen V; Ostergaard M; Christensen J; Overvad K; Tjønneland A; Vogel U
    BMC Cancer; 2009 Nov; 9():407. PubMed ID: 19930591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk.
    Le Marchand L; Hankin JH; Wilkens LR; Pierce LM; Franke A; Kolonel LN; Seifried A; Custer LJ; Chang W; Lum-Jones A; Donlon T
    Cancer Epidemiol Biomarkers Prev; 2001 Dec; 10(12):1259-66. PubMed ID: 11751443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer.
    Chen J; Stampfer MJ; Hough HL; Garcia-Closas M; Willett WC; Hennekens CH; Kelsey KT; Hunter DJ
    Cancer Res; 1998 Aug; 58(15):3307-11. PubMed ID: 9699660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red meat intake, NAT2, and risk of colorectal cancer: a pooled analysis of 11 studies.
    Ananthakrishnan AN; Du M; Berndt SI; Brenner H; Caan BJ; Casey G; Chang-Claude J; Duggan D; Fuchs CS; Gallinger S; Giovannucci EL; Harrison TA; Hayes RB; Hoffmeister M; Hopper JL; Hou L; Hsu L; Jenkins MA; Kraft P; Ma J; Nan H; Newcomb PA; Ogino S; Potter JD; Seminara D; Slattery ML; Thornquist M; White E; Wu K; Peters U; Chan AT
    Cancer Epidemiol Biomarkers Prev; 2015 Jan; 24(1):198-205. PubMed ID: 25342387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption.
    Lilla C; Verla-Tebit E; Risch A; Jäger B; Hoffmeister M; Brenner H; Chang-Claude J
    Cancer Epidemiol Biomarkers Prev; 2006 Jan; 15(1):99-107. PubMed ID: 16434594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary Intake of Meat Cooking-Related Mutagens (HCAs) and Risk of Colorectal Adenoma and Cancer: A Systematic Review and Meta-Analysis.
    Chiavarini M; Bertarelli G; Minelli L; Fabiani R
    Nutrients; 2017 May; 9(5):. PubMed ID: 28524104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A colorectal cancer diet quality index is inversely associated with colorectal cancer in the Malmö diet and cancer study.
    Vulcan A; Ericson U; Manjer J; Ohlsson B
    Eur J Cancer Prev; 2019 Nov; 28(6):463-471. PubMed ID: 30422929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intake of Red and Processed Meat, Use of Non-Steroid Anti-Inflammatory Drugs, Genetic Variants and Risk of Colorectal Cancer: A Prospective Study of the Danish "Diet, Cancer and Health" Cohort.
    Andersen V; Halekoh U; Tjønneland A; Vogel U; Kopp TI
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30841568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetable, fruit and meat consumption and potential risk modifying genes in relation to colorectal cancer.
    Turner F; Smith G; Sachse C; Lightfoot T; Garner RC; Wolf CR; Forman D; Bishop DT; Barrett JH
    Int J Cancer; 2004 Nov; 112(2):259-64. PubMed ID: 15352038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas.
    Ishibe N; Sinha R; Hein DW; Kulldorff M; Strickland P; Fretland AJ; Chow WH; Kadlubar FF; Lang NP; Rothman N
    Pharmacogenetics; 2002 Mar; 12(2):145-50. PubMed ID: 11875368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-done red meat, metabolic phenotypes and colorectal cancer in Hawaii.
    Le Marchand L; Hankin JH; Pierce LM; Sinha R; Nerurkar PV; Franke AA; Wilkens LR; Kolonel LN; Donlon T; Seifried A; Custer LJ; Lum-Jones A; Chang W
    Mutat Res; 2002 Sep; 506-507():205-14. PubMed ID: 12351160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association Between Intake of Red and Processed Meat and Survival in Patients With Colorectal Cancer in a Pooled Analysis.
    Carr PR; Banbury BL; Berndt SI; Campbell PT; Chang-Claude J; Hayes RB; Howard BV; Jansen L; Jacobs EJ; Lane DS; Nishihara R; Ogino S; Phipps AI; Slattery ML; Stefanick ML; Wallace R; Walter V; White E; Wu K; Peters U; Chan AT; Newcomb PA; Brenner H; Hoffmeister M
    Clin Gastroenterol Hepatol; 2019 Jul; 17(8):1561-1570.e3. PubMed ID: 30476588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study.
    Nöthlings U; Yamamoto JF; Wilkens LR; Murphy SP; Park SY; Henderson BE; Kolonel LN; Le Marchand L
    Cancer Epidemiol Biomarkers Prev; 2009 Jul; 18(7):2098-106. PubMed ID: 19549810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer.
    Chan AT; Tranah GJ; Giovannucci EL; Willett WC; Hunter DJ; Fuchs CS
    Int J Cancer; 2005 Jul; 115(4):648-52. PubMed ID: 15700302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.