BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 23216623)

  • 21. Effect of saliva esterase activity on ester solutions and possible consequences for the in-mouth ester release during wine intake.
    Pérez-Jiménez M; Rocha-Alcubilla N; Pozo-Bayón MÁ
    J Texture Stud; 2019 Feb; 50(1):62-70. PubMed ID: 30267419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic and phenotypic strain heterogeneity within a natural population of Oenococcus oeni from Amarone wine.
    Zapparoli G; Fracchetti F; Stefanelli E; Torriani S
    J Appl Microbiol; 2012 Nov; 113(5):1087-96. PubMed ID: 22897221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine.
    Bartowsky EJ; Borneman AR
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):441-7. PubMed ID: 21870044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking wine lactic acid bacteria diversity with wine aroma and flavour.
    Cappello MS; Zapparoli G; Logrieco A; Bartowsky EJ
    Int J Food Microbiol; 2017 Feb; 243():16-27. PubMed ID: 27940412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation.
    Zhao H; Li Y; Liu L; Zheng M; Feng Z; Hu K; Tao Y
    Food Res Int; 2022 Sep; 159():111604. PubMed ID: 35940798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Malolactic fermentation and secondary metabolite production by Oenoccocus oeni strains in low pH wines.
    Ruiz P; Izquierdo PM; Seseña S; García E; Palop ML
    J Food Sci; 2012 Oct; 77(10):M579-85. PubMed ID: 22924897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterologous expression of ctsR from Oenococcus oeni enhances the acid-ethanol resistance of Lactobacillus plantarum.
    Zhao H; Yuan L; Hu K; Liu L; Peng S; Li H; Wang H
    FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application and validation of autochthonous Lactobacillus plantarum starter cultures for controlled malolactic fermentation and its influence on the aromatic profile of cherry wines.
    Sun SY; Gong HS; Liu WL; Jin CW
    Food Microbiol; 2016 May; 55():16-24. PubMed ID: 26742612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption and biotransformation of anthocyanin glucosides and quercetin glycosides by Oenococcus oeni and Lactobacillus plantarum in model wine solution.
    Devi A; Konerira Aiyappaa AA; Waterhouse AL
    J Sci Food Agric; 2020 Mar; 100(5):2110-2120. PubMed ID: 31875958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving Oenococcus oeni to overcome challenges of wine malolactic fermentation.
    Betteridge A; Grbin P; Jiranek V
    Trends Biotechnol; 2015 Sep; 33(9):547-53. PubMed ID: 26197706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and technological properties of Oenococcus oeni strains from wine spontaneous malolactic fermentations: a framework for selection of new starter cultures.
    Solieri L; Genova F; De Paola M; Giudici P
    J Appl Microbiol; 2010 Jan; 108(1):285-98. PubMed ID: 19614854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses.
    Spano G; Rinaldi A; Ugliano M; Moio L; Beneduce L; Massa S
    J Appl Microbiol; 2005; 98(4):855-61. PubMed ID: 15752331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basic characterization and partial purification of β-glucosidase from cell-free extracts of Oenococcus oeni ST81.
    Mesas JM; Rodríguez MC; Alegre MT
    Lett Appl Microbiol; 2012 Sep; 55(3):247-55. PubMed ID: 22748149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment.
    Jiang J; Sumby KM; Sundstrom JF; Grbin PR; Jiranek V
    Food Microbiol; 2018 Aug; 73():150-159. PubMed ID: 29526200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diverse physiological and metabolic adaptations by Lactobacillus plantarum and Oenococcus oeni in response to the phenolic stress during wine fermentation.
    Devi A; Anu-Appaiah KA
    Food Chem; 2018 Dec; 268():101-109. PubMed ID: 30064736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of different malolactic fermentation inoculation scenarios on Riesling wine aroma.
    Knoll C; Fritsch S; Schnell S; Grossmann M; Krieger-Weber S; du Toit M; Rauhut D
    World J Microbiol Biotechnol; 2012 Mar; 28(3):1143-53. PubMed ID: 22805835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and biochemical diversity of Oenococcus oeni strains isolated during spontaneous malolactic fermentation of Malvasia Nera wine.
    Cappello MS; Zapparoli G; Stefani D; Logrieco A
    Syst Appl Microbiol; 2010 Dec; 33(8):461-7. PubMed ID: 21095085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of melatonin and other tryptophan derivatives by Oenococcus oeni under winery and laboratory scale.
    Fracassetti D; Francesco Lo Faro AF; Moiola S; Orioli M; Tirelli A; Iriti M; Vigentini I; Foschino R
    Food Microbiol; 2020 Apr; 86():103265. PubMed ID: 31703880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Insights Into Cinnamoyl Esterase Activity of
    Collombel I; Melkonian C; Molenaar D; Campos FM; Hogg T
    Front Microbiol; 2019; 10():2597. PubMed ID: 31781078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Esterase activity of lactic acid bacteria isolated from malolactic fermentation of red wines.
    Pérez-Martín F; Seseña S; Izquierdo PM; Palop ML
    Int J Food Microbiol; 2013 May; 163(2-3):153-8. PubMed ID: 23558198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.