These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23216645)

  • 1. Functional expression, purification and reconstitution of the recombinant phosphate transporter Pho89 of Saccharomyces cerevisiae.
    Sengottaiyan P; Ruiz-Pavón L; Persson BL
    FEBS J; 2013 Feb; 280(3):965-75. PubMed ID: 23216645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the biochemical and biophysical properties of the Saccharomyces cerevisiae phosphate transporter Pho89.
    Sengottaiyan P; Petrlova J; Lagerstedt JO; Ruiz-Pavon L; Budamagunta MS; Voss JC; Persson BL
    Biochem Biophys Res Commun; 2013 Jul; 436(3):551-6. PubMed ID: 23770362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae.
    Zvyagilskaya RA; Lundh F; Samyn D; Pattison-Granberg J; Mouillon JM; Popova Y; Thevelein JM; Persson BL
    FEMS Yeast Res; 2008 Aug; 8(5):685-96. PubMed ID: 18625026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress.
    Serra-Cardona A; Petrezsélyová S; Canadell D; Ramos J; Ariño J
    Mol Cell Biol; 2014 Dec; 34(24):4420-35. PubMed ID: 25266663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae.
    Martinez P; Persson BL
    Mol Gen Genet; 1998 Jun; 258(6):628-38. PubMed ID: 9671031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic Phosphate and Sulfate Transport in S. cerevisiae.
    Samyn DR; Persson BL
    Adv Exp Med Biol; 2016; 892():253-269. PubMed ID: 26721277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate permeases of Saccharomyces cerevisiae.
    Persson BL; Berhe A; Fristedt U; Martinez P; Pattison J; Petersson J; Weinander R
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):23-30. PubMed ID: 9693717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter.
    Ahn J; Hong J; Park M; Lee H; Lee E; Kim C; Lee J; Choi ES; Jung JK; Lee H
    Appl Environ Microbiol; 2009 Jun; 75(11):3528-34. PubMed ID: 19329662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of inorganic phosphate in Leishmania infantum and compensatory regulation at low inorganic phosphate concentration.
    Russo-Abrahão T; Alves-Bezerra M; Majerowicz D; Freitas-Mesquita AL; Dick CF; Gondim KC; Meyer-Fernandes JR
    Biochim Biophys Acta; 2013 Mar; 1830(3):2683-9. PubMed ID: 23671929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae.
    Giots F; Donaton MC; Thevelein JM
    Mol Microbiol; 2003 Feb; 47(4):1163-81. PubMed ID: 12581367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution and characterization of a Na+/Pi co-transporter protein from rabbit kidney brush-border membranes.
    Debiec H; Lorenc R; Ronco PM
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):97-102. PubMed ID: 1520289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHM6 and PHM7 genes are essential for phosphate surplus in the cells of Saccharomyces cerevisiae.
    Kulakovskaya E; Zvonarev A; Kulakovskaya T
    Arch Microbiol; 2023 Jan; 205(1):47. PubMed ID: 36592238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.
    Soares-Silva I; Schuller D; Andrade RP; Baltazar F; Cássio F; Casal M
    Biochem J; 2003 Dec; 376(Pt 3):781-7. PubMed ID: 12962538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of intestinal Na(+)-phosphate cotransporter.
    Peerce BE; Cedilote M; Seifert S; Levine R; Kiesling C; Clarke RD
    Am J Physiol; 1993 Apr; 264(4 Pt 1):G609-16. PubMed ID: 8476048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and purification of human and Saccharomyces cerevisiae equilibrative nucleoside transporters.
    Boswell-Casteel RC; Johnson JM; Roe-Žurž Z; Duggan KD; Schmitz H; Hays FA
    Protein Expr Purif; 2018 Feb; 142():68-74. PubMed ID: 28918196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biochemical characterization of two phosphate transport systems in Phytomonas serpens.
    Vieira-Bernardo R; Gomes-Vieira AL; Carvalho-Kelly LF; Russo-Abrahão T; Meyer-Fernandes JR
    Exp Parasitol; 2017 Feb; 173():1-8. PubMed ID: 27956087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions Between Monovalent Cations and Nutrient Homeostasis.
    Canadell D; Ariño J
    Adv Exp Med Biol; 2016; 892():271-289. PubMed ID: 26721278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and Purification of Membrane Proteins in Saccharomyces cerevisiae.
    King MS; Kunji ERS
    Methods Mol Biol; 2020; 2127():47-61. PubMed ID: 32112314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and expression of glucosamine-6-phosphate synthase from Saccharomyces cerevisiae in Pichia pastoris.
    Wang S; Li P; Su J; Wu X; Liang R
    Biotechnol Lett; 2014 Oct; 36(10):2023-8. PubMed ID: 24930098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life.
    Bøttger P; Pedersen L
    BMC Biochem; 2011 May; 12():21. PubMed ID: 21586110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.