BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 23216753)

  • 21. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M
    ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus.
    Kim TY; Lee SW; Oh MK
    Enzyme Microb Technol; 2014; 61-62():44-7. PubMed ID: 24910335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in
    Wang R; Cress BF; Yang Z; Hordines JC; Zhao S; Jung GY; Wang Z; Koffas MAG
    ACS Synth Biol; 2019 Sep; 8(9):2121-2130. PubMed ID: 31433622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli.
    Choi O; Wu CZ; Kang SY; Ahn JS; Uhm TB; Hong YS
    J Ind Microbiol Biotechnol; 2011 Oct; 38(10):1657-65. PubMed ID: 21424580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli.
    Watts KT; Lee PC; Schmidt-Dannert C
    Chembiochem; 2004 Apr; 5(4):500-7. PubMed ID: 15185374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of Pinocembrin Biosynthesis in
    Tous Mohedano M; Mao J; Chen Y
    ACS Synth Biol; 2023 Jan; 12(1):144-152. PubMed ID: 36534476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of yeast for fermentative production of flavonoids.
    Rodriguez A; Strucko T; Stahlhut SG; Kristensen M; Svenssen DK; Forster J; Nielsen J; Borodina I
    Bioresour Technol; 2017 Dec; 245(Pt B):1645-1654. PubMed ID: 28634125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae.
    Reifenrath M; Boles E
    Metab Eng; 2018 Jan; 45():246-254. PubMed ID: 29330068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elimination of aromatic fusel alcohols as by-products of
    Hassing EJ; Buijs J; Blankerts N; Luttik MA; Hulster EA; Pronk JT; Daran JM
    Metab Eng Commun; 2021 Dec; 13():e00183. PubMed ID: 34584841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli.
    Eudes A; Juminaga D; Baidoo EE; Collins FW; Keasling JD; Loqué D
    Microb Cell Fact; 2013 Jun; 12():62. PubMed ID: 23806124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
    McKenna R; Thompson B; Pugh S; Nielsen DR
    Microb Cell Fact; 2014 Aug; 13():123. PubMed ID: 25162943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases.
    Ralston L; Subramanian S; Matsuno M; Yu O
    Plant Physiol; 2005 Apr; 137(4):1375-88. PubMed ID: 15778463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycosylation Modification Enhances (2
    Li H; Ma W; Lyv Y; Gao S; Zhou J
    ACS Synth Biol; 2022 Jul; 11(7):2339-2347. PubMed ID: 35704764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of a heterologous pathway for the production of flavonoids from glucose.
    Santos CN; Koffas M; Stephanopoulos G
    Metab Eng; 2011 Jul; 13(4):392-400. PubMed ID: 21320631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol.
    Lyu X; Zhao G; Ng KR; Mark R; Chen WN
    J Agric Food Chem; 2019 May; 67(19):5596-5606. PubMed ID: 30957490
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Zang Y; Zha J; Wu X; Zheng Z; Ouyang J; Koffas MAG
    J Agric Food Chem; 2019 Dec; 67(49):13430-13436. PubMed ID: 30919618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides.
    Wang H; Yang Y; Lin L; Zhou W; Liu M; Cheng K; Wang W
    Microb Cell Fact; 2016 Aug; 15(1):134. PubMed ID: 27491546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning, primary structure and regulation of the ARO4 gene, encoding the tyrosine-inhibited 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae.
    Künzler M; Paravicini G; Egli CM; Irniger S; Braus GH
    Gene; 1992 Apr; 113(1):67-74. PubMed ID: 1348717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.