BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 2321707)

  • 1. Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.
    Walsh EJ; McGee J
    Am J Otolaryngol; 1990; 11(1):23-32. PubMed ID: 2321707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new auditory threshold estimation technique for low frequencies: proof of concept.
    Lichtenhan JT; Cooper NP; Guinan JJ
    Ear Hear; 2013; 34(1):42-51. PubMed ID: 22874644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L; McGee J; Walsh EJ
    J Neurophysiol; 2008 Jan; 99(1):344-55. PubMed ID: 17989242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.
    Wang J; Salvi RJ; Powers N
    J Neurophysiol; 1996 Jan; 75(1):171-83. PubMed ID: 8822550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of intracochlear and systemic furosemide on the properties of single cochlear nerve fibres in the cat.
    Evans EF; Klinke R
    J Physiol; 1982 Oct; 331():409-27. PubMed ID: 7153909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
    Tillein J; Hartmann R; Kral A
    Hear Res; 2015 Apr; 322():112-26. PubMed ID: 25285621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shapes of cat auditory nerve fiber tuning curves.
    Javel E
    Hear Res; 1994 Dec; 81(1-2):167-88. PubMed ID: 7737923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2899-906. PubMed ID: 18753325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal development of physiological responses in auditory nerve fibers.
    Dolan DF; Teas DC; Walton JP
    J Acoust Soc Am; 1985 Aug; 78(2):544-54. PubMed ID: 4031253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses from AVCN units in the cat before and after inducement of an acute noise trauma.
    van Heusden E; Smoorenburg GF
    Hear Res; 1983 Sep; 11(3):295-326. PubMed ID: 6630085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of frequency and intensity sensitivity of neurons in the anteroventral cochlear nucleus of kittens.
    Brugge JF; Kitzes LM; Javel E
    Hear Res; 1981 Nov; 5(2-3):217-29. PubMed ID: 7309639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the auditory brainstem response and auditory nerve thresholds in cats with hearing loss.
    Ngan EM; May BJ
    Hear Res; 2001 Jun; 156(1-2):44-52. PubMed ID: 11377881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals.
    Müller M; Smolders JW; Ding-Pfennigdorff D; Klinke R
    Hear Res; 1996 Dec; 102(1-2):133-54. PubMed ID: 8951458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral suppression and inhibition in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 Feb; 71(2):493-514. PubMed ID: 8176421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil.
    Ohlemiller KK; Echteler SM
    J Comp Physiol A; 1990 Aug; 167(3):329-38. PubMed ID: 2231475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the cat peripheral auditory system: input-output functions of cochlear potentials.
    Moore DR
    Brain Res; 1981 Aug; 219(1):29-44. PubMed ID: 6266603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency.
    Liberman MC
    J Acoust Soc Am; 1982 Nov; 72(5):1441-9. PubMed ID: 7175031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression Measured from Chinchilla Auditory-Nerve-Fiber Responses Following Noise-Induced Hearing Loss: Adaptive-Tracking and Systems-Identification Approaches.
    Sayles M; Walls MK; Heinz MG
    Adv Exp Med Biol; 2016; 894():285-295. PubMed ID: 27080669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.