These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23217085)

  • 21. Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3.
    Hong Y; Wu P; Li W; Gu J; Duan S
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2661-8. PubMed ID: 21938640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.
    Ma C; Yu Z; Lu Q; Zhuang L; Zhou SG
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3619-28. PubMed ID: 25503315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32.
    Zuo H; Kukkadapu R; Zhu Z; Ni S; Huang L; Zeng Q; Liu C; Dong H
    Sci Total Environ; 2020 Nov; 741():140213. PubMed ID: 32603937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III).
    Nepomnyashchaya YN; Slobodkina GB; Baslerov RV; Chernyh NA; Bonch-Osmolovskaya EA; Netrusov AI; Slobodkin AI
    Int J Syst Evol Microbiol; 2012 Mar; 62(Pt 3):613-617. PubMed ID: 21531740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox reaction between solid-phase humins and Fe(III) compounds: Toward a further understanding of the redox properties of humin and its possible environmental effects.
    Xiao Z; Yang L; Chen C; Chen D; Zhou X
    J Environ Manage; 2022 May; 310():114793. PubMed ID: 35220098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decreased Electron Transfer between Cr(VI) and AH2DS in the Presence of Goethite.
    Tomaszewski EJ; Ginder-Vogel M
    J Environ Qual; 2018 Jan; 47(1):139-146. PubMed ID: 29415106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12.
    Hong YG; Guo J; Xu ZC; Xu MY; Sun GP
    J Microbiol Biotechnol; 2007 Mar; 17(3):428-37. PubMed ID: 18050946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria.
    Straub KL; Kappler A; Schink B
    Methods Enzymol; 2005; 397():58-77. PubMed ID: 16260285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction.
    Coby AJ; Picardal FW
    Environ Sci Technol; 2006 Jun; 40(12):3813-8. PubMed ID: 16830547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Humics as an electron donor for anaerobic respiration.
    Lovley DR; Fraga JL; Coates JD; Blunt-Harris EL
    Environ Microbiol; 1999 Feb; 1(1):89-98. PubMed ID: 11207721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in quinone redox system of humic substances between endemic and disease-free areas in Kashin-Beck disease-affected Changdu Region, Tibet, China.
    Jiang Y; Gao D; Xu N; Mao X; Yuan H; Hu M; Guo Y; Junaid M; Zhang M; Xie H; Zhu X; Yi M; Ni J
    Environ Geochem Health; 2021 Aug; 43(8):3133-3149. PubMed ID: 33523329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction capacity of humic acid and its association with the evolution of redox structures during composting.
    Cui D; Tan W; Yue D; Yu H; Dang Q; Xi B
    Waste Manag; 2022 Nov; 153():188-196. PubMed ID: 36108537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight to Microbial Fe(III) Reduction Mediated by Redox-Active Humic Acids with Varied Redox Potentials.
    Duan J; Xu Z; Yang Z; Jiang J
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34202887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17.
    Li XM; Zhou SG; Li FB; Wu CY; Zhuang L; Xu W; Liu L
    J Appl Microbiol; 2009 Jan; 106(1):130-9. PubMed ID: 19054230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction.
    Kulkarni HV; Mladenov N; McKnight DM; Zheng Y; Kirk MF; Nemergut DR
    Sci Total Environ; 2018 Feb; 615():1390-1395. PubMed ID: 29751443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d.
    Bai YN; Wang XN; Wu J; Lu YZ; Fu L; Zhang F; Lau TC; Zeng RJ
    Water Res; 2019 Nov; 164():114935. PubMed ID: 31387057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.