BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23217169)

  • 1. Endocytic SNAREs are involved in optimal Coxiella burnetii vacuole development.
    Campoy EM; Mansilla ME; Colombo MI
    Cell Microbiol; 2013 Jun; 15(6):922-41. PubMed ID: 23217169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cAMP effectors, Rap2b and EPAC, are involved in the regulation of the development of the Coxiella burnetii containing vacuole by altering the fusogenic capacity of the vacuole.
    Mansilla Pareja ME; Gaurón MC; Robledo E; Aguilera MO; Colombo MI
    PLoS One; 2019; 14(2):e0212202. PubMed ID: 30763357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of the
    Mansilla Pareja ME; Bongiovanni A; Lafont F; Colombo MI
    Front Cell Infect Microbiol; 2017; 7():112. PubMed ID: 28484683
    [No Abstract]   [Full Text] [Related]  

  • 4. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.
    Cueto JA; Vanrell MC; Salassa BN; Nola S; Galli T; Colombo MI; Romano PS
    Cell Microbiol; 2017 Jun; 19(6):. PubMed ID: 27992096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell.
    Romano PS; Gutierrez MG; Berón W; Rabinovitch M; Colombo MI
    Cell Microbiol; 2007 Apr; 9(4):891-909. PubMed ID: 17087732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The early secretory pathway contributes to the growth of the Coxiella-replicative niche.
    Campoy EM; Zoppino FC; Colombo MI
    Infect Immun; 2011 Jan; 79(1):402-13. PubMed ID: 20937765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Content Imaging Reveals Expansion of the Endosomal Compartment during
    Larson CL; Heinzen RA
    Front Cell Infect Microbiol; 2017; 7():48. PubMed ID: 28293541
    [No Abstract]   [Full Text] [Related]  

  • 8. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening.
    McDonough JA; Newton HJ; Klum S; Swiss R; Agaisse H; Roy CR
    mBio; 2013 Jan; 4(1):e00606-12. PubMed ID: 23362322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events.
    Pryor PR; Mullock BM; Bright NA; Lindsay MR; Gray SR; Richardson SC; Stewart A; James DE; Piper RC; Luzio JP
    EMBO Rep; 2004 Jun; 5(6):590-5. PubMed ID: 15133481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorting of the v-SNARE VAMP7 in Dictyostelium discoideum: a role for more than one Adaptor Protein (AP) complex.
    Bennett N; Letourneur F; Ragno M; Louwagie M
    Exp Cell Res; 2008 Sep; 314(15):2822-33. PubMed ID: 18634783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of microtubules and the dynein/dynactin motor complex of host cells in the biogenesis of the Coxiella burnetii-containing vacuole.
    Ortiz Flores RM; Distel JS; Aguilera MO; Berón W
    PLoS One; 2019; 14(1):e0209820. PubMed ID: 30640917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication.
    Howe D; Melnicáková J; Barák I; Heinzen RA
    Cell Microbiol; 2003 Jul; 5(7):469-80. PubMed ID: 12814437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LAMP proteins account for the maturation delay during the establishment of the Coxiella burnetii-containing vacuole.
    Schulze-Luehrmann J; Eckart RA; Ölke M; Saftig P; Liebler-Tenorio E; Lührmann A
    Cell Microbiol; 2016 Feb; 18(2):181-94. PubMed ID: 26249821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusogenicity of the Coxiella burnetii parasitophorous vacuole.
    Howe D; Melnicákova J; Barák I; Heinzen RA
    Ann N Y Acad Sci; 2003 Jun; 990():556-62. PubMed ID: 12860689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntaxin 7, syntaxin 8, Vti1 and VAMP7 (vesicle-associated membrane protein 7) form an active SNARE complex for early macropinocytic compartment fusion in Dictyostelium discoideum.
    Bogdanovic A; Bennett N; Kieffer S; Louwagie M; Morio T; Garin J; Satre M; Bruckert F
    Biochem J; 2002 Nov; 368(Pt 1):29-39. PubMed ID: 12175335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism.
    Howe D; Heinzen RA
    Cell Microbiol; 2006 Mar; 8(3):496-507. PubMed ID: 16469060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of chimeric phagosomes that shelter Mycobacterium avium and Coxiella burnetii (phase II) in doubly infected mouse macrophages: an ultrastructural study.
    de Chastellier C; Thibon M; Rabinovitch M
    Eur J Cell Biol; 1999 Aug; 78(8):580-92. PubMed ID: 10494865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles.
    Gutierrez MG; Vázquez CL; Munafó DB; Zoppino FC; Berón W; Rabinovitch M; Colombo MI
    Cell Microbiol; 2005 Jul; 7(7):981-93. PubMed ID: 15953030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii.
    Kohler LJ; Roy CR
    Microbes Infect; 2015; 17(11-12):766-71. PubMed ID: 26327296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth.
    Miller HE; Larson CL; Heinzen RA
    PLoS Pathog; 2018 Apr; 14(4):e1007005. PubMed ID: 29668757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.