BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 23217364)

  • 1. Biomolecular electrostatics and solvation: a computational perspective.
    Ren P; Chun J; Thomas DG; Schnieders MJ; Marucho M; Zhang J; Baker NA
    Q Rev Biophys; 2012 Nov; 45(4):427-91. PubMed ID: 23217364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational methods for biomolecular electrostatics.
    Dong F; Olsen B; Baker NA
    Methods Cell Biol; 2008; 84():843-70. PubMed ID: 17964951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects.
    Lomize AL; Pogozheva ID; Mosberg HI
    J Chem Inf Model; 2011 Apr; 51(4):918-29. PubMed ID: 21438609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential geometry based solvation model II: Lagrangian formulation.
    Chen Z; Baker NA; Wei GW
    J Math Biol; 2011 Dec; 63(6):1139-200. PubMed ID: 21279359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models.
    Im W; Chen J; Brooks CL
    Adv Protein Chem; 2005; 72():173-98. PubMed ID: 16581377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational electrostatic projection (VEP) methods for efficient modeling of the macromolecular electrostatic and solvation environment in activated dynamics simulations.
    Gregersen BA; York DM
    J Phys Chem B; 2005 Jan; 109(1):536-56. PubMed ID: 16851046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics.
    Masella M; Borgis D; Cuniasse P
    J Comput Chem; 2013 May; 34(13):1112-24. PubMed ID: 23382002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular Simulations with the Three-Dimensional Reference Interaction Site Model with the Kovalenko-Hirata Closure Molecular Solvation Theory.
    Roy D; Kovalenko A
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic hydration potentials using a Monte Carlo Reference State (MCRS) for protein solvation modeling.
    Rakhmanov SV; Makeev VJ
    BMC Struct Biol; 2007 Mar; 7():19. PubMed ID: 17397537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P; Trylska J
    Biopolymers; 2008 Feb; 89(2):93-113. PubMed ID: 17969016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements to the APBS biomolecular solvation software suite.
    Jurrus E; Engel D; Star K; Monson K; Brandi J; Felberg LE; Brookes DH; Wilson L; Chen J; Liles K; Chun M; Li P; Gohara DW; Dolinsky T; Konecny R; Koes DR; Nielsen JE; Head-Gordon T; Geng W; Krasny R; Wei GW; Holst MJ; McCammon JA; Baker NA
    Protein Sci; 2018 Jan; 27(1):112-128. PubMed ID: 28836357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of nucleic acid structure: electrostatics and solvation.
    Cheatham TE; Brooks BR; Kollman PA
    Curr Protoc Nucleic Acid Chem; 2001 Aug; Chapter 7():Unit 7.9. PubMed ID: 18428877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic potentials of proteins in water: a structured continuum approach.
    Hildebrandt A; Blossey R; Rjasanow S; Kohlbacher O; Lenhof HP
    Bioinformatics; 2007 Jan; 23(2):e99-103. PubMed ID: 17237112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation-driven charge transfer and localization in metal complexes.
    Rondi A; Rodriguez Y; Feurer T; Cannizzo A
    Acc Chem Res; 2015 May; 48(5):1432-40. PubMed ID: 25902015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions.
    Collins KD
    Biophys Chem; 2012 Jun; 167():43-59. PubMed ID: 22608112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of nucleic Acid structure: electrostatics and solvation.
    Bergonzo C; Galindo-Murillo R; Cheatham TE
    Curr Protoc Nucleic Acid Chem; 2014 Dec; 55():7.9.1-27. PubMed ID: 25631536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.