These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 23217364)

  • 1. Biomolecular electrostatics and solvation: a computational perspective.
    Ren P; Chun J; Thomas DG; Schnieders MJ; Marucho M; Zhang J; Baker NA
    Q Rev Biophys; 2012 Nov; 45(4):427-91. PubMed ID: 23217364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational methods for biomolecular electrostatics.
    Dong F; Olsen B; Baker NA
    Methods Cell Biol; 2008; 84():843-70. PubMed ID: 17964951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects.
    Lomize AL; Pogozheva ID; Mosberg HI
    J Chem Inf Model; 2011 Apr; 51(4):918-29. PubMed ID: 21438609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential geometry based solvation model II: Lagrangian formulation.
    Chen Z; Baker NA; Wei GW
    J Math Biol; 2011 Dec; 63(6):1139-200. PubMed ID: 21279359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models.
    Im W; Chen J; Brooks CL
    Adv Protein Chem; 2005; 72():173-98. PubMed ID: 16581377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational electrostatic projection (VEP) methods for efficient modeling of the macromolecular electrostatic and solvation environment in activated dynamics simulations.
    Gregersen BA; York DM
    J Phys Chem B; 2005 Jan; 109(1):536-56. PubMed ID: 16851046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics.
    Masella M; Borgis D; Cuniasse P
    J Comput Chem; 2013 May; 34(13):1112-24. PubMed ID: 23382002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular Simulations with the Three-Dimensional Reference Interaction Site Model with the Kovalenko-Hirata Closure Molecular Solvation Theory.
    Roy D; Kovalenko A
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic hydration potentials using a Monte Carlo Reference State (MCRS) for protein solvation modeling.
    Rakhmanov SV; Makeev VJ
    BMC Struct Biol; 2007 Mar; 7():19. PubMed ID: 17397537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P; Trylska J
    Biopolymers; 2008 Feb; 89(2):93-113. PubMed ID: 17969016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements to the APBS biomolecular solvation software suite.
    Jurrus E; Engel D; Star K; Monson K; Brandi J; Felberg LE; Brookes DH; Wilson L; Chen J; Liles K; Chun M; Li P; Gohara DW; Dolinsky T; Konecny R; Koes DR; Nielsen JE; Head-Gordon T; Geng W; Krasny R; Wei GW; Holst MJ; McCammon JA; Baker NA
    Protein Sci; 2018 Jan; 27(1):112-128. PubMed ID: 28836357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of nucleic acid structure: electrostatics and solvation.
    Cheatham TE; Brooks BR; Kollman PA
    Curr Protoc Nucleic Acid Chem; 2001 Aug; Chapter 7():Unit 7.9. PubMed ID: 18428877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic potentials of proteins in water: a structured continuum approach.
    Hildebrandt A; Blossey R; Rjasanow S; Kohlbacher O; Lenhof HP
    Bioinformatics; 2007 Jan; 23(2):e99-103. PubMed ID: 17237112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation-driven charge transfer and localization in metal complexes.
    Rondi A; Rodriguez Y; Feurer T; Cannizzo A
    Acc Chem Res; 2015 May; 48(5):1432-40. PubMed ID: 25902015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions.
    Collins KD
    Biophys Chem; 2012 Jun; 167():43-59. PubMed ID: 22608112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of nucleic Acid structure: electrostatics and solvation.
    Bergonzo C; Galindo-Murillo R; Cheatham TE
    Curr Protoc Nucleic Acid Chem; 2014 Dec; 55():7.9.1-27. PubMed ID: 25631536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.