These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23218142)

  • 1. Accurate in vitro identification of fracture onset in bones: failure mechanism of the proximal human femur.
    Juszczyk MM; Cristofolini L; Salvà M; Zani L; Schileo E; Viceconti M
    J Biomech; 2013 Jan; 46(1):158-64. PubMed ID: 23218142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures.
    de Bakker PM; Manske SL; Ebacher V; Oxland TR; Cripton PA; Guy P
    J Biomech; 2009 Aug; 42(12):1917-25. PubMed ID: 19524929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human proximal femur behaves linearly elastic up to failure under physiological loading conditions.
    Juszczyk MM; Cristofolini L; Viceconti M
    J Biomech; 2011 Aug; 44(12):2259-66. PubMed ID: 21722906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of femoral neck fracture risk for a novel proximal epiphyseal hip prosthesis.
    Cristofolini L; Juszczyk M; Taddei F; Field RE; Rushton N; Viceconti M
    Clin Biomech (Bristol); 2011 Jul; 26(6):585-91. PubMed ID: 21334123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-field strain measurement during mechanical testing of the human femur at physiologically relevant strain rates.
    Grassi L; Väänänen SP; Yavari SA; Jurvelin JS; Weinans H; Ristinmaa M; Zadpoor AA; Isaksson H
    J Biomech Eng; 2014 Nov; 136(11):. PubMed ID: 25162941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal crack propagation in bone around femoral prosthesis.
    Incavo SJ; DiFazio F; Wilder D; Howe JG; Pope M
    Clin Orthop Relat Res; 1991 Nov; (272):175-80. PubMed ID: 1934730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does screw configuration affect subtrochanteric fracture after femoral neck fixation?
    Oakey JW; Stover MD; Summers HD; Sartori M; Havey RM; Patwardhan AG
    Clin Orthop Relat Res; 2006 Feb; 443():302-6. PubMed ID: 16462455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertically oriented femoral neck fractures: mechanical analysis of four fixation techniques.
    Aminian A; Gao F; Fedoriw WW; Zhang LQ; Kalainov DM; Merk BR
    J Orthop Trauma; 2007 Sep; 21(8):544-8. PubMed ID: 17805021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic loading of fractured cadaveric femurs after elastomer femoroplasty: an in vitro biomechanical study.
    van der Steenhoven TJ; Schaasberg W; de Vries AC; Valstar ER; Nelissen RG
    Clin Biomech (Bristol); 2012 Oct; 27(8):819-23. PubMed ID: 22682558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones.
    Heini PF; Franz T; Fankhauser C; Gasser B; Ganz R
    Clin Biomech (Bristol); 2004 Jun; 19(5):506-12. PubMed ID: 15182986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strains caused by daily loading might be responsible for delayed healing of an incomplete atypical femoral fracture.
    Gustafsson A; Schilcher J; Grassi L; Aspenberg P; Isaksson H
    Bone; 2016 Jul; 88():125-130. PubMed ID: 27113528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanical consequence of insufficient femoral component lateralization and exposed cancellous bone in hip resurfacing arthroplasty.
    Olsen M; Davis ET; Whyne CM; Zdero R; Schemitsch EH
    J Biomech Eng; 2010 Aug; 132(8):081011. PubMed ID: 20670060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of pre-clinical testing exemplified by femoral fractures in vitro with new bone preparation technique.
    Kold S; Bechtold JE; Mouzin O; Bourgeault C; Søballe K
    Clin Biomech (Bristol); 2005 Jan; 20(1):77-82. PubMed ID: 15567540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study between axial compression and lateral fall configuration tested in a rat proximal femur model.
    Zhang G; Qin L; Shi Y; Leung K
    Clin Biomech (Bristol); 2005 Aug; 20(7):729-35. PubMed ID: 15963616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximal femoral fracture. Range of hip motion as a predictor of fracture type.
    Binns M; Shardlow D; Soames R
    Clin Orthop Relat Res; 2000 Jul; (376):222-8. PubMed ID: 10906879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of implant overlap on the mechanical properties of the femur.
    Harris T; Ruth JT; Szivek J; Haywood B
    J Trauma; 2003 May; 54(5):930-5. PubMed ID: 12777906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.